Contents

PART B

INTRODUCTION .. xv
11. LINEAR MODELS I ... 499
 11.1. Describing the model 499
 11.1.1. Elements of linear algebra 501
 11.1.2. A Binomial-Logistic model 504
 11.1.3. The general linear model 506
 11.1.4. A Normal-Identity model 507
 11.1.5. The linear predictor and the link function ... 508
 11.1.6. The density function 509
 11.1.7. The likelihood function for the Exponential family 511
 11.1.8. The Binomial-Logistic example 512
 11.2. Fitting a model to the data 513
 11.2.1. The data structure 513
 11.2.2. The likelihood function and its maximum 514
 11.2.3. The deviance 517
 11.2.4. Regression through the origin 518
 11.2.5. Partitioning the deviance 520
 11.3. Model specification and selection 522
 11.3.1. Subspaces 522
 11.3.2. Model formulae for the linear predictor 524
 11.3.3. Models for qualitative data 526
 11.3.4. The factors: main effects and interaction 528
 11.3.5. A two-factor model for a two-way analysis of variance model 530
 11.3.6. Factorial models for cross-classified data ... 533
 11.3.7. Mixed models 536
 11.3.8. Factors with ordered levels 538
 11.4. Contingency tables 540
 11.4.1. Sampling models for contingency tables 540
 11.4.2. Independence models for the linear predictor 542
 11.4.3. Three-way independence models 545
 11.4.4. Response and treatment factors 546
 11.5. Further reading and references 547
12. LINEAR MODELS II ... 549
 12.1. Least squares .. 549
 12.1.1. Introductory ideas on Least squares 549
 12.1.2. Least squares in 2-space 551
 12.1.3. Maximum likelihood estimation for the Normal density 553
 12.1.4. Least squares on two explanatory variables 554
 12.1.5. The non-orthogonal case 557
 12.1.6. Extensions to further explanatory variables 560
 12.2. Repeated sampling 561
 12.2.1. Normal distribution theory 561
 12.2.2. First and second moments 562
 12.2.3. One explanatory variable 563
 12.2.4. Two orthogonal explanatory variables 566
 12.2.5. Non-orthogonal explanatory variables 568
 12.3. Least squares and the likelihood function 571
 12.3.1. Weighted least squares 571
 12.3.2. Approximating the likelihood function 572
 12.3.3. Example: fitting an independence model 574
 12.3.4. An Exponential example 575
 12.3.5. An iterative procedure 576
 12.3.6. Asymptotic sampling theory 576
 12.4. Further reading and references 577

13. SEQUENTIAL ANALYSIS 579
 13.1. Sequential tests of hypotheses 580
 13.1.1. The Operating Characteristic (O.C.) function 580
 13.1.2. Expected sample size 581
 13.1.3. Examples of sampling inspection schemes 581
 13.2. The sequential probability ratio test (SPRT) 583
 13.2.1. Approximate values for the stopping boundaries 583
 13.2.2. Examples 585
 13.3. The O.C. function of the SPRT 588
 13.4. Expected sample size for the SPRT 590
 13.5. Examples 591
 13.6. The SPRT for composite hypotheses 594
 13.7. Tests involving two Binomials 596
 13.7.1. Wald's method 597
 13.7.2. Armitage's method 597
 13.7.3. Discussion 600
 13.8. Other sequential procedures 600
 13.8.1. Sequential designs for the 'Two-Binomials' problem 600
 13.8.2. Bayesian methods 601
 13.9. Further reading and references 601
Contents

14. DISTRIBUTION-FREE METHODS

14.1. Introduction .. 603
14.2. Tests based on the empirical distribution function 604
 14.2.1. The Kolmogorov–Smirnov test: one sample 606
 14.2.2. The Kolmogorov–Smirnov test: two samples 608
14.3. Tests based on order statistics 610
14.4. One-sample tests .. 611
 14.4.1. Sign test ... 611
 14.4.2. The Wilcoxon signed ranks test 613
14.5. Matched pairs ... 615
14.6. Two-sample tests ... 615
 14.6.1. The two-sample median test 616
 14.6.2. The Wilcoxon–Mann–Whitney test 618
 14.6.3. Runs .. 621
14.7. Several samples ... 623
 14.7.1. Median test ... 623
 14.7.2. The Kruskal–Wallis test 624
14.8. Randomization tests 626
14.9. Rank correlation measures 628
 14.9.1. Spearman's rank correlation coefficient 628
 14.9.2. Kendall's rank correlation coefficient 629
14.10. Further reading and references 631

15. BAYESIAN STATISTICS

15.1. Introduction ... 633
15.2. Bayes' theorem: the discrete case 635
 15.2.1. Learning from a single data set 635
 15.2.2. Learning from several data sets 639
 15.2.3. Bayes' theorem expressed in terms of odds 643
 15.2.4. Extension to an infinite list of possible models 644
15.3. Bayes' theorem: the continuous case 644
 15.3.1. The continuous form of Bayes' theorem 644
 15.3.2. The assessment of prior densities 647
 (i) Smoothing of historical data; (ii) Judgemental curve
 fitting
 15.3.3. An illustration of Bayes' theorem for a single unknown
 parameter ... 652
 15.3.4. An illustration of Bayes' theorem for two unknown
 parameters .. 655
 15.3.5. Approximate analysis under great prior uncertainty .. 657
15.4. Bayesian approaches to typical statistical questions 665
 15.4.1. Point estimation 665
 15.4.2. Interval estimation 666
 15.4.3. Significance testing 668
 15.4.4. Prediction .. 669
15.4.5. Summarizing data: sufficient statistics 669
15.4.6. The likelihood principle 670
15.5. Bayesian inference for some univariate probability models 672
 15.5.1. Inferences for Binomial and related distributions 672
 15.5.2. Inferences for the Poisson distribution 678
 15.5.3. Inferences for the Normal distribution 681
15.6. Bayes methods when models contain many parameters 685
 15.6.1. Inappropriateness of 'completely vague' prior specifications 685
 15.6.2. Simple examples 685
15.7. Further reading and references 687

16. MULTIVARIATE ANALYSIS: CLASSICAL METHODS 689
 16.1. Introduction 689
 16.2. Samples from multivariate Normal (MVN) distributions 695
 16.2.1. Maximum likelihood estimation 696
 16.2.2. Some sampling distributions 698
 16.2.3. Tests and confidence regions for the expectation vector 700
 16.2.4. Two-sample problems 701
 16.2.5. Inferences about the correlation coefficient 702
 16.2.6. Non-central distributions 704
 16.3. Principal components 704
 16.3.1. Introduction 704
 16.3.2. Population principal components 705
 16.3.3. Sample principal components 707
 16.3.4. Numerical example 708
 16.3.5. Some sampling distributions 710
 16.4. Factor Analysis 710
 16.4.1. Introduction 710
 16.4.2. Factor model 711
 16.4.3. Some properties 711
 16.4.4. Estimation 713
 16.4.5. Discussion 714
 16.5. Canonical correlation 715
 16.5.1. Introduction 715
 16.5.2. Population canonical correlations 715
 16.5.3. Sample canonical correlations 718
 16.5.4. Numerical example 719
 16.6. Discriminant analysis 720
 16.6.1. Introduction 720
 16.6.2. Discrimination in two known populations 720
 16.6.3. Discrimination in two multivariate populations 721
 16.6.4. Discrimination in several populations 723
 16.7. Further reading and references 724
17. MULTIVARIATE ANALYSIS: ORDINATION MULTIDIMENSIONAL SCALING AND ALLIED TOPICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>727</td>
</tr>
<tr>
<td>17.2</td>
<td>Principal components analysis</td>
<td>729</td>
</tr>
<tr>
<td>17.3</td>
<td>Multiplicative models and the Eckhart–Young theorem</td>
<td>733</td>
</tr>
<tr>
<td>17.4</td>
<td>Biplots</td>
<td>735</td>
</tr>
<tr>
<td>17.5</td>
<td>Correspondence analysis</td>
<td>739</td>
</tr>
<tr>
<td>17.6</td>
<td>Metric scaling: principal coordinates analysis and classical scaling</td>
<td>741</td>
</tr>
<tr>
<td>17.7</td>
<td>Metric scaling: other methods</td>
<td>746</td>
</tr>
<tr>
<td>17.8</td>
<td>Non-metric multidimensional scaling</td>
<td>751</td>
</tr>
<tr>
<td>17.9</td>
<td>Multidimensional unfolding</td>
<td>754</td>
</tr>
<tr>
<td>17.10</td>
<td>Orthogonal Procrustes analysis</td>
<td>761</td>
</tr>
<tr>
<td>17.11</td>
<td>The general comparison of scalings</td>
<td>764</td>
</tr>
<tr>
<td>17.12</td>
<td>Three-way scaling</td>
<td>771</td>
</tr>
<tr>
<td>17.13</td>
<td>The analysis of asymmetry</td>
<td>776</td>
</tr>
<tr>
<td>17.14</td>
<td>Further reading and references</td>
<td>779</td>
</tr>
</tbody>
</table>

18. TIME SERIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>783</td>
</tr>
<tr>
<td>18.2</td>
<td>Classical regression models for time series</td>
<td>784</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Seasonal effects model</td>
<td>784</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Cyclical component model</td>
<td>786</td>
</tr>
<tr>
<td>18.3</td>
<td>The periodogram of a time series</td>
<td>790</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Harmonic components of periodic time series</td>
<td>790</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Harmonic regression analysis</td>
<td>792</td>
</tr>
<tr>
<td>18.3.3</td>
<td>The periodogram</td>
<td>793</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Effect of mean correction on the periodogram</td>
<td>794</td>
</tr>
<tr>
<td>18.3.5</td>
<td>Periodograms for simple models</td>
<td>795</td>
</tr>
<tr>
<td>18.3.6</td>
<td>The interpretation of periodograms</td>
<td>797</td>
</tr>
<tr>
<td>18.4</td>
<td>Differencing operations</td>
<td>798</td>
</tr>
<tr>
<td>18.5</td>
<td>Stationary time series</td>
<td>800</td>
</tr>
<tr>
<td>18.5.1</td>
<td>The autocorrelation function (acf)</td>
<td>800</td>
</tr>
<tr>
<td>18.5.2</td>
<td>The relationship between the periodogram and the acf</td>
<td>803</td>
</tr>
<tr>
<td>18.5.3</td>
<td>The spectrum and sample spectrum</td>
<td>804</td>
</tr>
<tr>
<td>18.5.4</td>
<td>Properties of the spectrum and acf</td>
<td>805</td>
</tr>
<tr>
<td>18.5.5</td>
<td>The partial autocorrelation function (pacf)</td>
<td>806</td>
</tr>
<tr>
<td>18.5.6</td>
<td>The sample pacf</td>
<td>808</td>
</tr>
<tr>
<td>18.6</td>
<td>The general linear model (GLM)</td>
<td>811</td>
</tr>
<tr>
<td>18.6.1</td>
<td>Definition and properties</td>
<td>811</td>
</tr>
<tr>
<td>18.6.2</td>
<td>Linear operations on time series</td>
<td>811</td>
</tr>
<tr>
<td>18.6.3</td>
<td>Linear operations and the spectrum</td>
<td>813</td>
</tr>
<tr>
<td>18.6.4</td>
<td>Linear operations on a finite sample</td>
<td>815</td>
</tr>
<tr>
<td>18.6.5</td>
<td>Constraints on the GLM</td>
<td>816</td>
</tr>
<tr>
<td>18.6.6</td>
<td>Prediction using the GLM</td>
<td>818</td>
</tr>
</tbody>
</table>
18.7. The moving average (MA) model

18.7.1. Model definition
18.7.2. Characteristic property of the MA(q) model
18.7.3. Efficient estimation for MA(q) models
18.7.4. Forecasting using MA models
18.7.5. The EWMA predictor
18.7.6. Box–Jenkins seasonal model for the airline series

18.8. The autoregressive (AR) model

18.8.1. Model definition
18.8.2. First and second order examples
18.8.3. Characteristic properties of the AR(p) model
18.8.4. Efficient estimation for the AR(p) model
18.8.5. Forecasting using AR(p) models

18.9. Autoregressive moving average (ARMA) models

18.9.1. Model definition and properties
18.9.2. An example

18.10. Spectrum estimation

18.10.1. The difficulties
18.10.2. Direct methods of estimation
18.10.3. Indirect methods of estimation
18.10.4. The use of spectral analysis

18.11. Time series regression models

18.12. Further reading and references

19. DECISION THEORY

19.1. Basic ideas
19.1.1. Mathematical framework
19.1.2. Minimax and Bayes decision rules
19.1.3. Admissible decisions
19.1.4. Geometric interpretation
19.1.5. Some basic theorems

19.2. Statistics and decision theory
19.2.1. Estimation
19.2.2. Tests of simple hypotheses versus simple hypotheses
19.2.3. The Neyman–Pearson lemma

19.3. Risk attitudes and utility theory
19.3.1. Risk aversion
19.3.2. One-dimensional utility functions
19.3.3. Assessment of utility functions
19.3.4. Higher-dimensional utility functions

19.4. Sequential decisions
19.4.1. Basic ideas
19.4.2. Decision trees

19.5. Axiomatic approaches
19.5.1. Coherence axioms for decision-making . 891
19.5.2. Degrees of belief as probabilities . 892
19.6. Further reading and references . 896

20. KALMAN FILTERING . 897
20.1. Historical background . 897
20.2. State-space models . 899
20.2.1. System and measurement equations . 899
20.2.2. A simple example . 900
20.3. Derivation of the Kalman filter for a discrete linear dynamic system . 902
20.3.1. Assumptions . 902
20.3.2. The Kalman gain . 902
20.3.3. Optimum choice of the Kalman gain . 904
20.3.4. State prediction . 905
20.3.5. Interpretation of filter equations . 905
20.3.6. Summary . 906
20.4. Test of filter performance . 907
20.4.1. Innovation properties . 907
20.4.2. Filter divergence . 908
20.5. Kalman filtering for continuous time and non-linear systems . 909
20.5.1. Continuous time systems . 909
20.5.2. Non-linear systems: the extended Kalman filter . 910
20.6. Model identification and parameter estimation . 912
20.6.1. General . 912
20.6.2. Model identification . 915
20.6.3. Parameter estimation . 919
 (a) Linear estimation; (b) Non-linear estimation
20.7. Applications . 922
20.7.1. An application of the discrete Linear Kalman filter . 922
 (a) Introduction; (b) identification and parameter estimation; (c) Results
20.7.2. An application of the extended Kalman filter . 929
 (a) The hydrological model; (b) State-space formulation; (c) Parameter estimation; (d) Results
20.8. Concluding remarks . 936
20.9. Further reading and references . 936

Bibliography . 939
Appendix . A1
Index . xxii

Chapters 1–10 are contained in Part A.