Combinatorial Peptide and Nonpeptide Libraries

A Handbook

Edited by Günther Jung
Contents

Preface V
List of Contributors XIX
List of Abbreviations XXIII

1 Natural Peptide Libraries of Microbial and Mammalian Origin

Günther Jung

1.1 Introduction 1
1.2 Natural Peptide Libraries of Microbial Origin 2
1.2.1 Microbial Polypeptide Antibiotics by Multienzymatic Thiotemplate Synthesis 2
1.2.2 Polypeptide Antibiotics by Ribosomal Precursor Protein Synthesis and Posttranslational Modifications 4
1.2.3 Combinatorial Biosynthesis and Biological Diversity of Polyketids 8
1.3 Natural Peptide Libraries of Mammalian Origin 9
1.3.1 Self-Peptide Libraries Isolated from MHC-Class I Molecules 9
1.3.2 Self-Peptide Libraries Isolated from MHC-Class II Molecules 10
1.4 From Natural to Synthetic Peptide Libraries 12
1.4.1 Synthetic Methods and the Variety of Peptide and Oligomer Libraries 12
1.4.2 Analysis of Synthetic Peptide Libraries 13
1.4.3 Selected Applications of Synthetic Peptide Libraries 14
References 15

2 Polymer Supported Organic Synthesis: A Review

Jörg S. Früchtel and Günther Jung

2.1 Introduction 19
2.2 Solid-Phase Organic Synthesis and Analytics 20
2.2.1 Advantages of Solid-Phase Synthesis in Organic Reactions and Product Work-Up 20
2.2.2 Supports and Anchors 22
2.2.3 Multiple, Parallel Syntheses 28
2.2.4 Analytics and Monitoring of Solid-Phase Reactions 34
2.3  Examples of Solid-Phase Syntheses of Small Molecules  36
2.3.1 Immobilization and Reactions with Hydroxy Compounds  36
2.3.1.1 Derivatization of Hydroxy Compounds by Mitsunobu Reaction  40
2.3.2 Immobilization and Derivatization of Aldehydes and Ketones  42
2.3.3 Immobilization and Derivatization of Dicarboxylic Acids and Their Derivatives  44
2.3.4 Ring Closure Reactions  46
2.3.5 Heterocyclic Compounds: Benzodiazepines, Hydantoins and Thiazolidines  49
2.3.6 Further Ring Closures on Solid Support  54
2.3.7 Palladium Catalyzed C-C Attachments  56
2.3.8 Further Reactions on Polymeric Support  59
2.4  Oligomer Synthesis  61
2.4.1 Peptoids  62
2.4.2 Oligocarbamates  64
2.4.3 Peptide-Nucleic Acids (PNA)  65
2.4.4 Oligoureas  67
2.5  Outlook  68
Acknowledgments  70
References  70

3  From Multiple Peptide Synthesis to Peptide Libraries
Annette G. Beck-Sickinger and Günther Jung

3.1  Introduction  79
3.2  Simultaneous Multiple Peptide Synthesis (SMPS)  80
3.2.1 Tea-Bag Synthesis  82
3.2.2 Cellulose as Support in Multiple Syntheses  84
3.2.3 Polystyrene-Grafted Polyethylene (PS-PE) Film, a New Resin?  85
3.2.4 Automated Multiple Peptide Synthesizers  85
3.2.5 Synthesis of Polymer-Bound Peptides  90
3.2.6 Spot Synthesis  93
3.2.7 Spatially Addressed Synthesis of Thousands of Peptides  93
3.2.8 Microstructured Peptide-Gold Electrode  94
3.2.9 Peptide Functionalized Surface by Electrochemical Polymerization  94
3.3  Peptide Libraries  94
3.3.1 Mixotopes  97
3.3.2 Mimitopes  98
3.3.3 Phage Libraries and Biopanning  98
3.3.4 Random Libraries  99
3.3.5 Modified Peptide Libraries  102
3.3.6 Identification of the Active Compounds  103
4 Chemical Synthesis of Peptide Libraries

Arpád Furka

4.1 The Portioning-Mixing Method 111
4.1.1 Principles and Realization 111
4.1.2 Experimental Verification 113
4.1.3 The ELPLC Program 114
4.1.4 Simple Device for the Manual Synthesis of Peptide Libraries 116
4.1.5 Efficiency and Limitations 118
4.2 Composition of Peptide Libraries 120
4.2.1 Libraries and Sublibraries 120
4.2.2 First-Order Sublibraries 122
4.2.3 Second-Order Sublibraries 124
4.2.4 Higher Order Sublibraries 127
4.3 Potential Use of Partial Libraries in Screening: A Theoretical Approach 128
4.3.1 The Domino Strategy 130
4.3.1.1 Determination of the Amino Acid Occurrence Library (Stage 1) 130
4.3.1.2 Determination of Positional Occurrence Library (Stage 2) 131
4.3.1.3 Determination of Active Sequences (Stage 3) 132
4.3.1.4 Generality of the Domino Strategy 135
4.4 Experimental Realization of the Portioning-Mixing Procedure 135
Acknowledgments 137
References 137

5 The Versatility of Nonsupport-Bound Combinatorial Libraries

Clemencia Pinilla, Jon Appel, Colette Dooley, Sylvie Blondelle, Jutta Eichler, Barbara Dörner, John Ostresh and Richard A. Houghten

5.1 Introduction 139
5.1.1 Solid-Phase Peptide Synthesis 139
5.1.2 Peptide Libraries 140
5.2 Preparation of Synthetic Peptide Combinatorial Libraries 142
5.2.1 DCR Method 142
5.2.2 Coupling of Amino Acid Mixtures 143
5.3 Dual Positional SCLs 143
5.3.1 Use of SCLs 144
5.3.1.1 Identification of Antigenic Determinants 144
Combinatorial Library Based on the One-Bead–One-Compound Concept

Kit S. Lam and Michal Lebl

6.1 Introduction 173
6.2 The Basic Concept of “One-Bead-One-Compound” 175
6.3 Synthesis of Random Peptide Library 176
6.4 Screening with an “On-Bead Binding Assay” 176
6.5 Screening with a “Releasable Assay” 177
6.6 Libraries of Organic Molecules 178
6.7 Scaffold Libraries 179
6.8 Structure Determination of Positive Reaction Compounds 179
6.9 Coding 182
6.10 Elimination of Possible Interaction of Target Macromolecule with Coding Structure: Bead Shaving 183
6.11 Is It Necessary To Have Full Representation in a Selectide Library? 184
6.13 The Selectide Process Versus Other Combinatorial Library Methodologies 185
6.14 Examples of Application 189
6.14.1 Anti-β-Endorphin Monoclonal Antibody 189
6.14.2 Anti-Insulin Monoclonal Antibody 190
6.14.3 MHC-Class I Molecule 191
6.14.4 Releasable Assay Screening System 192
6.14.5 Posttranslational Modification such as Protein Phosphorylation 192
6.14.6 Small Organic Dye Molecule as a Target 193
6.14.7 Screening of Library of Libraries 194
6.15 Perspective 194
Acknowledgments 195
References 195

Karl-Heinz Wiesmüller, Susanne Feiertag, Burkhard Fleckenstein, Stefan Kienle, Dieter Stoll, Markus Herrmann and Günther Jung

7.1 Introduction 203
7.2 Methods for the Generation of Peptide Libraries 204
7.2.1 Manually Synthesized Peptide Libraries 204
7.2.2 Automation to Ensure Reproducible, Simultaneous, Multiple Peptide Synthesis 205
7.2.3 Peptide Diversity Determines Procedures for Synthesis and Bioassay 207
7.2.4 Coupling Reactions with Premixed Amino Acid Derivatives 210
7.2.5 Soluble and Polymer-Bound Libraries in One Run 210
7.3 Analytical Control of Peptide Mixtures 211
7.3.1 Monitoring During Synthesis 213
7.3.1.1 Method for Indirect Determination of the Coupling Yield by Amino Acid Analysis 213
7.3.2 Amino Acid Analysis, Capillary Electrophoresis and Mass Spectrometry of Peptide Libraries 214
7.4 Pipet Robot for the Synthesis of Peptide Libraries 218
7.4.1 Procedure for the Synthesis of Peptide Libraries by the “Premix Method” 220
7.4.1.1 Experimental Procedure 220
7.5 Conformationally Constrained Peptide Libraries 221
7.5.1 Synthesis of Cyclopeptides 223
7.5.1.1 Loading of 2-Chlorotritylchloride Resin with Fmoc-Amino Acids 223
7.5.1.2 Synthesis of Linear Peptides 223
7.5.1.3 Cleavage of Fully Side Chain-Protected Peptides from the Resins 224
7.5.1.4 Cyclization Reactions 224
7.5.1.5 Cleavage of Side Chain-Protecting Groups 225
7.5.2 Characterization of Cyclopeptide Sublibraries 227
7.6 Pentadecapeptide Libraries for Receptor Binding Studies 235
7.6.1 Competition Assay for MHC-Class II Binding Peptides 236
8 Mass Spectrometric Analysis of Peptide Libraries

Jörg W. Metzger, Karl-Heinz Wiesmüller, Stefan Kienle, Jente Brünjes and Günther Jung

8.1 Introduction 247
8.2 Results and Discussion 247
8.2.1 Analytical Techniques for the Characterization of Soluble Combinatorial Peptide Libraries 247
8.2.2 Mass Spectrometry of Peptides 249
8.2.3 Electrospray Ionization (ESI) 249
8.2.4 Peptide Families in Peptide Libraries 250
8.2.5 Calculation of Mass Distributions and Peak Clans 251
8.2.6 Mass Spectrometry of Peptide Libraries 251
8.2.7 Electrospray Mass Spectrometry — A Potent Method for the Characterization of Peptide Libraries 251
8.2.8 Relative Ion Intensities — A Measure for the Number of Isobaric Peptides in Peptide Libraries? 253
8.2.9 Experimental Conditions for Recording ESI Mass Spectra of Peptide Libraries 259
8.2.10 Mass Resolution and Accuracy of Mass Determination 260
8.2.11 Mass Analyzers 260
8.2.12 Fourier Transform Ion Cyclotron Resonance ESI Mass Spectrometry 261
8.2.13 Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) 261
8.2.14 Tandem Mass Spectrometry (MS-MS) of Peptide Libraries and Diagnostic Ions 265
8.2.15 High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) of Peptide Libraries 274
8.2.16 Limits for Mass Spectrometric Characterization of Peptide Libraries 281
8.3 Materials and Methods 281
8.3.1 Peptide Synthesis 281
8.3.2 Mass Spectrometry 282
8.3.3 Narrow-Bore RP-HPLC 283
8.3.4 Calculation of the Mass Distribution with QMass 283
8.4 Summary 283
Acknowledgment 284
References 284
9 Multiple Sequence Analysis of Natural and Synthetic Peptide Libraries
Wieland Keilholz and Stefan Stevanović

9.1 Introduction 287
9.2 Multiple Sequence Analysis as a Further Development of Edman Degradation 287
9.3 Applications 290
9.3.1 Natural Peptide Libraries: Ligand Motifs of MHC-I and MHC-II Molecules 290
9.3.1.1 Pool Sequencing of MHC-I Ligands 291
9.3.1.2 Pool Sequencing of MHC-II Ligands 293
9.3.2 Synthetic Peptide Libraries 296
References 301

10 Epitope Mapping with the Use of Peptide Libraries
Stuart Rodda, Gordon Tribbick and Mario Geysen

10.1 Introduction 303
10.1.1 Definition of Epitope 303
10.1.2 Brief History of Antibody-Defined Epitope Mapping 304
10.1.3 History of T-Cell Epitope Mapping 305
10.1.4 Comparison between Linear Epitope Scanning and the Combinatorial Library Approach 305
10.2 Synthetic Peptides for Epitope Mapping 306
10.2.1 Difficulty of Predicting Epitopes 306
10.2.2 Nature of the Screening Task 306
10.2.3 "Format" of Peptides for Epitope Mapping 307
10.2.4 Peptide Purity and Characterization 309
10.3 Validity Testing of Peptide Assay Results 310
10.3.1 Testing the Relevance of Peptide Binding Data 310
10.3.1.1 Antibody Binding 310
10.3.1.2 Major Histocompatibility Complex (MHC) Binding 311
10.3.2 Testing the Relevance of Bioactivity Data 312
10.3.2.1 Bioactivity of Antibody-Defined Linear Peptide Epitopes 312
10.3.2.2 Bioactivity of T-Cell Epitopes 313
10.4 Peptide Libraries from Pins 313
10.4.1 Types of Library: Strategies 313
10.4.2 Methods of Synthesis of Peptide Libraries on Pins 316
10.4.3 Strategies for Maximizing the Usefulness of Pins 317
10.4.4 Approaches to Amino Acid Mixtures 318
10.4.5 Downstream Processing of Pin-Peptide Libraries 318
XIV Contents

10.4.6 Screening Methods Applicable to Pin Peptides 319
10.5 Comparison of Methods of Peptide Library Generation for Epitope Mapping 320
10.5.1 Systems Using Spatially Stable Matrices 320
10.5.2 Systems Producing "Loose" Solid-Phase Peptides 321
10.5.3 Systems Producing Cleaved Peptides 322
References 322

11 Cyclic Peptide Libraries: Recent Developments
Arno F. Spatola and Peteris Romanovskis

11.1 Introduction 327
11.2 Results and Discussion 328
11.2.1 Cyclic Pentapeptides 330
11.2.2 Cyclic Hexapeptides 336
11.2.3 Cyclic Heptapeptides 337
11.3 Summary 338
11.4 Materials and Methods 340
11.4.1 General Solid-Phase Peptide Synthesis Procedure 341
11.4.1.1 Synthesis of a Stylostatin Peptide Library with Six Sublibraries (6 × 256 Peptides) 341
Acknowledgments 346
References 346

12 Random Peptide Libraries as Tools in Basic and Applied Immunology
Keiko Udaka, Karl-Heinz Wiesmüller, Stefan Kienle, Susanne Feiertag, Günther Jung and Peter Walden

12.1 Introduction 349
12.2 Peptide Binding to MHC Molecules 350
12.3 Synthetic Random Peptide Libraries 351
12.4 Peptide Selection by MHC Molecules 352
12.5 Interdependence of the Contribution of Individual Amino Acids to Peptide-MHC Interaction 356
12.6 T-Cell Epitopes Defined with Peptide Libraries 358
12.7 Conclusions 361
References 361
13 Combinatorial Synthesis on Membrane Supports by the SPOT Technique: Imaging Peptide Sequence and Shape Space
Ronald Frank, Stefan Hoffmann, Michael Kieß, Heike Lahmann, Werner Tegge, Christian Behn and Heinrich Gausepohl

13.1 Introduction 363
13.2 General Technical Aspects of SPOT Synthesis 365
13.2.1 Instrumental 365
13.2.2 Peptide Synthesis on Spots 366
13.2.3 Peptide Library Synthesis 369
13.2.4 Library Design 370
13.3 Applications of Peptide Libraries on Spots 372
13.3.1 Solid-Phase Ligand Binding Assay 372
13.3.1.1 Positional Scanning Libraries 375
13.3.1.2 Iterative Library Search (Mimotope Approach) 376
13.3.1.3 Dual-Positional Scanning 378
13.3.2 Enzymatic Transformations of Peptide Libraries 379
13.3.3 Other Applications and Future Developments 382
13.4 Methods 383
13.4.1 Peptide Library Assembly 383
13.4.2 Side Chain Deprotection 383
13.4.3 Ligand Binding Assay on SPOTs Membranes 384
13.4.4 Enzymatic Phosphorylation 384
References 385

14 Automated Synthesis of Nonnatural Oligomer Libraries: The Peptoid Concept
Lutz S. Richter, David C. Spellmeyer, Eric J. Martin, Gianine M. Figliozzi and Ronald N. Zuckermann

14.1 Introduction 387
14.2 Criteria and Goals for the Generation of Molecular Diversity 387
14.3 The Peptoid Approach 389
14.4 Synthesis of NSG Peptoids 391
14.5 Automated Synthesis of Equimolar Peptoid Mixtures 394
14.6 Rational Approaches for Library Design and the Generation of Structural Diversity 396
14.7 Peptoid Ligands with Nanomolar Affinity for Adrenergic and Opiate Receptors 397
14.7.1 Design of a Biased Library for 7-Transmembrane/G-Protein Coupled Receptors 397

References 385
14.7.2 Identification of Peptoid Ligands with Nanomolar Affinity 398
14.7.3 Discussion 399
14.8 Summary 401
14.9 Experimental Procedures 402
14.9.1 Standard Protocol for the Synthesis of NSG Peptoids with C-Terminal Amides Using the Submonomer Method 402
14.9.1.1 Bromoacetylation of Rink-Amide-Resin and the N-Terminal Amine of an NSG Peptoid Chain 402
14.9.1.2 Displacement of the Bromide of Resin-Bound Bromoacetamides with Primary Amines 402
14.9.1.3 Cleavage of the Peptoid/Peptoid Mixture from the Solid Support 402

15 Synthesis and Evaluation of Three 1,4-Benzodiazepine Libraries
Barry A. Bunin, Matthew J. Plunkett and Jonathan A. Ellman

15.1 Introduction 405
15.2 Synthesis Criteria for a Benzodiazepine Library 406
15.3 Chiron Mimotopes (Geysen) Pin Apparatus 406
15.4 Solid-Phase 1,4-Benzodiazepine Synthesis 407
15.5 First Generation 1,4-Benzodiazepine Library 410
15.6 Second Generation 1,4-Benzodiazepine Library 411
15.7 Current Solid-Phase 1,4-Benzodiazepine Synthesis 411
15.8 Design of a Large 1,4-Benzodiazepine Library 413
15.9 Synthesis of an 11200 Member 1,4-Benzodiazepine Library 415
15.10 Alternate Strategies for Benzodiazepine-Based Diversity 417
15.11 Conclusion 418
15.12 Experimental Section 418
15.12.1 Reagents and General Methods 418
15.12.1.1 Fmoc Deprotection of Aminomethyl Solid Support (Pins) 419
15.12.1.2 2-Aminobenzophenone 419
15.12.2 Method A 419
15.12.2.1 Coupling Fmoc-Protected 2-Aminobenzophenones (1) to Pins to Give 2 419
15.12.2.2 Fmoc Cleavage 419
15.12.3 Method B 420
15.12.3.1 Coupling Aminoaryl Stannane Cyanomethyl Ester to Pins to Give 7 420
15.12.3.2 Stille Coupling Reactions 420
15.12.3.3 Bpoc Cleavage 420
15.12.4 Benzodiazepine Synthesis from 2-Aminoarylketones 420
15.12.4.1 Amino Acid Fluoride Acylation 420
15.12.4.2 Amino Acid Fmoc Cleavage and Benzodiazepine Cyclization 421
15.12.4.3 Benzodiazepine Alkylation 421
15.12.4.4 Cleavage from the Support 422
15.12.4.5 Analytical Evaluation of the 1,4-Benzodiazepine Library 422
Acknowledgments 423
References 423

16 PEG Grafted Polystyrene Tentacle Polymers: Physico-Chemical Properties and Application in Chemical Synthesis
Wolfgang Rapp

16.1 Introduction 425
16.2 Physico-Chemical Properties of Polystyrene-Poly(ethyleneglycol)-Tentacle Polymers 427
16.3 Peptide Synthesis 436
16.4 Monosized Tentacle Microspheres for Screening and High Speed Peptide Synthesis 438
16.5 TentaGel Peptide Conjugates in Immunization 442
16.6 Oligonucleotide Synthesis 445
16.7 Macrobeads as Polymeric Microreactors: Peptide Libraries and Combinatorial Chemistry 446
References 458

17 Supports for Solid-Phase Organic Synthesis
Martin Winter

17.1 Introduction 465
17.2 Polystyrene Supports 468
17.2.1 Polystyrene Base Resins 468
17.2.2 Acid-Labile Polystyrene Resins 472
17.2.3 Base-Labile, Photo-Labile and Nucleophilic Cleavable Polystyrene Resins 481
17.3 TentaGel Resins 484
17.4 PolyHIPE Resins 489
17.5 PEGA Resins 491
17.6 Kieselguhr-Polyamide Supports (“Pepsyn K”) 492
17.7 Controlled-Pore Supports (CPG, CPC) 495
17.8 Other Silicate Supports 498
17.9 Miscellaneous Support Components 499
17.10 Appendix 502
17.10.1 Conversion Table (mesh – particle size, mm) 502