Total-Reflection X-Ray Fluorescence Analysis

REINHOLD KLOCKENKÄMPER
Institut für Spektrochemie und Angewandte Spektroskopie
Dortmund, Germany
CONTENTS

FOREWORD ix

ACKNOWLEDGMENTS xi

CUMULATIVE LISTING OF VOLUMES IN SERIES xiii

CHAPTER 1 FUNDAMENTALS OF X-RAY FLUORESCENCE 1

1.1. History and Relations of XRF and TXRF 1
1.2. Nature and Production of X-rays 5
 1.2.1. The Line Spectrum 7
 1.2.2. The Continuous Spectrum 13
1.3. Attenuation of X-rays 16
 1.3.1. Photoelectric Absorption 18
 1.3.2. X-ray Scatter 21
 1.3.3. Total Attenuation 23
1.4. Deflection of X-rays 25
 1.4.1. Reflection and Refraction 25
 1.4.2. Total External Reflection 29
 1.4.2.1. Reflectivity 33
 1.4.2.2. Penetration Depth 35

References 38

CHAPTER 2 PRINCIPLES OF TOTAL-REFLECTION XRF 41

2.1. Interference of X-rays 41
 2.1.1. Double-Beam Interference 42
 2.1.2. Multiple-Beam Interference 46
2.2. Standing Wave Fields 50
 2.2.1. Standing Wave Fields in Front of a
 Thick Substrate 51
 2.2.2. Standing Wave Fields Within a Thin Layer 56
2.2.3. Standing Wave Fields Within a Multilayer or Crystal 61
2.3. Intensity of Fluorescence Signals 63
 2.3.1. Infinitely Thick and Flat Substrates 63
 2.3.2. Granular Residues on a Substrate 65
 2.3.3. Buried Layers in a Substrate 67
 2.3.4. Reflecting Layers on Substrates 69
 2.3.5. Periodic Multilayers and Crystals 73
2.4. Formalism for Intensity Calculations 74
 2.4.1. A Thick and Flat Substrate 75
 2.4.2. A Thin Homogeneous Layer on a Substrate 78
 2.4.3. A Stratified Medium of Several Layers 82
References 85

CHAPTER 3 INSTRUMENTATION FOR TXRF 87
3.1. Basic Instrumental Setup 88
3.2. The High-Power X-ray Source 91
 3.2.1. Fine-Focus X-ray Tubes 91
 3.2.2. Rotating Anode Tubes 93
3.3. The Beam-Adapting Unit 94
 3.3.1. Low-Pass Filters 94
 3.3.2. Monochromators 100
3.4. Sample Positioning 102
 3.4.1. Sample Carriers 102
 3.4.2. Fixed-Angle Adjustment 104
 3.4.3. Stepwise-Angle Variation 104
3.5. Detection and Registration 106
 3.5.1. The Semiconductor Detector 107
 3.5.2. The Registration Unit 109
 3.5.3. Performance Characteristics 111
 3.5.3.1. Detector Efficiency 111
 3.5.3.2. Spectral Resolution 113
 3.5.3.3. Input–Output Yield 116
 3.5.3.4. The Escape-Peak Phenomenon 118
References 120
CHAPTER 4 PERFORMANCE OF TXRF ANALYSES

4.1. Preparations for Measurement
 4.1.1. Cleaning Procedures
 4.1.2. Preparation of Samples
 4.1.3. Presentation of a Specimen

4.2. Recording and Interpretation of Spectra
 4.2.1. The Instrumental Setup
 4.2.2. Recording the Spectrograms
 4.2.3. Qualitative Analysis
 4.2.3.1. Element Detection
 4.2.3.2. Fingerprint Analysis

4.3. Quantitative Micro- and Trace Analyses
 4.3.1. Prerequisites for Quantification
 4.3.1.1. Determination of Net Intensities
 4.3.1.2. Determination of Relative Sensitivities
 4.3.2. Quantification by Internal Standardization
 4.3.2.1. Standard Addition for a Single Element
 4.3.2.2. Multielement Determinations
 4.3.3. Conditions and Limitations

4.4. Quantitative Surface and Thin-Layer Analyses
 4.4.1. Recording Angle-Dependent Intensity Profiles
 4.4.2. Distinguishing Between Types of Contamination
 4.4.3. Characterization of Thin Layers

References

CHAPTER 5 EFFICIENCY AND APPLICABILITY OF TXRF

5.1. Analytical Considerations
 5.1.1. General Costs of Installation and Upkeep
 5.1.2. Detection Power for Elements
 5.1.3. Reliability of Determinations
 5.1.4. The Great Variety of Suitable Samples

5.2. Environmental Applications
 5.2.1. Water Samples
 5.2.2. Airborne Particulates
 5.2.3. Plant Materials