Basic Electric Circuit Theory
A One-Semester Text

I. D. Mayergoyz
University of Maryland
Department of Electrical Engineering
College Park, Maryland

W. Lawson
University of Maryland
Department of Electrical Engineering
College Park, Maryland

ACADEMIC PRESS
An Imprint of Elsevier
San Diego London Boston
New York Sydney Tokyo Toronto
Contents

Preface xi

1 **Basic Circuit Variables and Elements** 1
 1.1 Introduction 1
 1.2 Circuit Variables 2
 1.2.1 Electric Charge 2
 1.2.2 Electric and Displacement Currents 3
 1.2.3 Electric Energy 6
 1.2.4 Voltage 6
 1.2.5 Electric Power 7
 1.2.6 Flux Linkages 8
 1.3 Reference Directions 10
 1.4 The Resistor 11
 1.5 The Inductor 16
 1.6 The Capacitor 19
 1.7 Ideal Independent Voltage and Current Sources 24
 1.8 Summary 25
 1.9 Problems 26

2 **Kirchhoff's Laws** 33
 2.1 Introduction 33
 2.2 Circuit Topology 34
 2.3 Kirchhoff's Laws 36
 2.3.1 Kirchhoff's Current Law 36
 2.3.2 Kirchhoff's Voltage Law 37
 2.4 Linearly Independent Kirchhoff Equations 39
 2.4.1 General Circuits 39
 2.4.2 Resistive Circuits 47
 2.5 Summary 51
 2.6 Problems 52

3 **AC Steady State** 58
 3.1 Introduction 58
 3.2 AC Quantities 59
3.3 Amplitude and Phase Relationships for Circuit Elements 60
3.4 Phasors 63
3.5 Impedance and Admittance 66
3.6 AC Steady-State Equations 74
3.7 AC Power 80
3.8 Complex Frequency 86
3.9 Summary 90
3.10 Problems 91

4 Equivalent Transformations of Electric Circuits 98
 4.1 Introduction 98
 4.2 Series and Parallel Connections 98
 4.3 Voltage and Current Divider Rules 103
 4.4 Input Impedance 107
 4.5 Symmetry 110
 4.6 The Superposition Principle 115
 4.7 An Introduction to Electric Circuit Simulation with MicroSim PSpice 124
 4.8 Summary 136
 4.9 Problems 137

5 Thevenin's Theorem and Related Topics 143
 5.1 Introduction 143
 5.2 Nonideal Two-Terminal Circuit Elements 143
 5.3 Equivalent Transformations of Nonideal Voltage and Current Sources 145
 5.4 Thevenin's Theorem 146
 5.4.1 Proof of Thevenin's Theorem 147
 5.4.2 Using Thevenin's Theorem in Analysis 149
 5.5 Norton's Theorem 155
 5.6 Nonlinear Resistive Circuits 159
 5.7 Summary 170
 5.8 Problems 170

6 Nodal and Mesh Analysis 174
 6.1 Introduction 174
 6.2 Nodal Analysis 174
 6.3 Mesh Current Analysis 186
 6.4 MicroSim PSpice Simulations 195
 6.5 Summary 199
 6.6 Problems 201

7 Transient Analysis 208
 7.1 Introduction 208
 7.2 First-Order Circuits 209
7.2.1 Circuits Excited by Initial Conditions 209
7.2.2 Circuits Excited by Sources 217
7.2.3 Circuits Excited by Initial Conditions and Sources 228
7.3 Second-Order Circuits 233
7.3.1 Circuits Excited by Initial Conditions 233
7.3.2 Circuits Excited by Sources 241
7.4 Transfer Functions and Their Applications 247
7.5 Impulse Response and Convolution Integral 256
7.5.1 Convolution Integral for an RL Circuit 257
7.5.2 Convolution Integral for Arbitrary Linear Circuits 263
7.5.3 Applications of the Convolution Integral 265
7.6 Circuits with Diodes (Rectifiers) 269
7.7 MicroSim PSpice Simulations 279
7.8 Summary 286
7.9 Problems 288

8 Dependent Sources and Operational Amplifiers 297
8.1 Introduction 297
8.2 Dependent Sources as Linear Models for Transistors 298
8.3 Analysis of Circuits with Dependent Sources 303
8.3.1 Nodal Analysis 303
8.3.2 Mesh Current Analysis 305
8.3.3 Thevenin’s Theorem 307
8.4 Operational Amplifiers 313
8.4.1 Voltage Follower–Buffer Amplifier 314
8.4.2 Noninverting Amplifier 317
8.4.3 Inverting Amplifier 318
8.4.4 Adder (Summer) Circuit 319
8.4.5 Integrator 321
8.4.6 Differentiator 323
8.4.7 Application of Operational Amplifiers to the Integration of Differential Equations (Analog Computer) 325
8.5 MicroSim PSpice Simulations 329
8.6 Summary 336
8.7 Problems 337

9 Frequency Characteristics of Electric Circuits 345
9.1 Introduction 345
9.2 Resonance 346
9.3 Passive Filters 349
9.3.1 High-Pass Filter 350
9.3.2 Low-Pass Filter 351
9.3.3 Band-Pass Filter 353
9.3.4 Band-Notch Filter 354
9.4 Bode Plots 354