TABLE OF CONTENTS

1. OVERVIEW OF ROBOT CALIBRATION 1
 I. The Motivation 1
 II. Historical Perspective 3

2. CAMERA CALIBRATION TECHNIQUES 11
 I. Introduction 11
 II. Camera Models 11
 A. A distortion-free camera model 11
 B. Camera calibration: Basic concepts 14
 C. Lens distortion model 16
 III. Tsai's RAC-Based Camera Calibration Algorithm 20
 A. Stage 1: computation of the rotation matrix R and the translation parameters t_x and t_y 21
 B. Stage 2: computation of t_z, k, f_x and f_y 24
 IV. A Fast RAC-Based Algorithm 24
 A. Stage 1: computation of the rotation matrix R and the translation parameters t_x and t_y 25
 B. Stage 2: computation of t_z, k, f_x and f_y 26
 V. Optical Axis Perpendicular to the Calibration Board 27
 A. Modification of the camera model 28
 B. A calibration algorithm 29
 VI. Nonlinear Least-Squares Approach 30
 A. A linear estimation procedure 31
 B. A nonlinear estimation procedure 34
 VII. Estimation of the Ratio of Scale Factors 35
 A. Single camera method 35
 B. Stereo cameras method 38
 VIII. Estimation of the Image Center 39
 IX. Perspective Projection Distortion of Circular Calibration Points 41
 A. A special case - one dimensional distortion 41
 B. The general case 46
 X. Simulation and Experimental Results 50
 A. Simulation study of image center estimation 50
5 ERROR-MODEL-BASED KINEMATIC IDENTIFICATION

I. Introduction 133
II. Differential Transformations 134
III. Finite Difference Approximation to Kinematic Error Models 139
IV. Generic Linearized Kinematic Error Models 141
 A. Linear mappings relating end-effector Cartesian errors to Cartesian errors of individual links 142
 B. Linear mapping relating Cartesian errors to link parameter errors 144
 C. Elimination of redundant parameters 145
 D. Observability of kinematic parameters 147
V. The D-H Error Model 153
 A. Linear mapping relating Cartesian errors to D-H parameter errors of individual links 153
 B. The linearized D-H error model 154
VI. The CPC Error Model 156
 A. Linear mapping relating Cartesian errors to independent CPC parameter errors of individual links 156
 B. The linearized CPC error model 161
 C. Linearized BASE and TOOL error models 163
VII. The MCPC Error Model 166
 A. Linear mapping relating Cartesian errors to MCPC parameter errors of individual links 166
 B. The linearized MCPC Error Model 166
VIII. Summary and References 168

6. KINEMATIC IDENTIFICATION: LINEAR SOLUTION APPROACHES 171

I. Introduction 171
II. Problem Formulation and a Solution Strategy 172
III. A Hybrid Linear Solution Method for All-Revolute Manipulators 174
 A. Solution for the orientation parameters 176
 B. Solution for the translation parameters 178
IV. An All-Recursive Linear Solution Approach for General Serial Manipulators 181
 A. Problem reformulation 181
 B. Calibration of a prismatic joint 183
7. SIMULTANEOUS CALIBRATION OF A ROBOT AND A HAND-MOUNTED CAMERA

I. Introduction 201
II. Kinematic Model, Cost Function and Solution Strategy 202
III. The Identification Jacobian 206
IV. Implementation Issues 210
 A. Camera parameters 210
 B. Robot parameters 211
 C. Change of reference coordinate system 211
 D. Observability of the unknown parameters 212
 E. Verification of the calibration results 213
V. Extension to Stereo-Camera Case 214
VI. Discussion and References 215

8. ROBOTIC HAND/EYE CALIBRATION

I. Introduction 217
II. Review of Quaternion Algebra 220
 A. Quaternions 220
 B. Quaternion algebra 221
III. A Linear Solution 222
 A. Solution for the rotation matrix 223
 B. Solution for the translation vector 227
IV. A Nonlinear Iterative Solution 229
A. An alternative mathematical formulation of the hand/eye calibration problem 229
B. The cost function 231
C. The identification Jacobian 232
D. Observability issues 233
V. Simulation Results 236
VI. Discussion and References 241

9. ROBOTIC BASE CALIBRATION 245

I. Introduction 245
II. Problem Statement 245
III. Estimation of the Base Orientation 247
 A. Quaternion-based algorithms 247
 B. SVD-based method 251
IV. Estimation of the Base Position 251
V. Experimental Results 252
VI. Summary and References 254

10. SIMULTANEOUS CALIBRATION OF ROBOTIC BASE AND TOOL 255

I. Introduction 255
II. Problem Statement 256
III. A Linear Solution 257
 A. Solution for the rotation matrices 258
 B. Solution for the position vectors 263
IV. Simulation Studies 266
 A. Number of pose measurements required for calibration 267
 B. Calibration effectiveness under different measurement noise levels 267
 C. Calibration effectiveness when the nominal robot geometry deviates from its actual one and joint readings are not perfect 269
V. Summary and References 270

11. ROBOT ACCURACY COMPENSATION 273

I. Introduction 273
II. Workspace-Mapping Method 273
 A. System setups 274
 B. Accuracy compensation sub-tasks 274
 C. Bilinear interpolation 276
III. Model-Based Pose-Redefinition Algorithm 277
IV. Gradient-Based Algorithms
A. Solution strategy 278
B. Derivation of the manipulator Jacobian 279
C. A Newton-Raphson compensation algorithm 282
D. DLS and LQR algorithms 282
E. Simulation results 285

VI. Summary and References 289

12. SELECTION OF ROBOT MEASUREMENT CONFIGURATIONS 291

I. Introduction 291

II. Problem Statement 291
A. Performance measures 291
B. A general problem statement 292
C. A more restricted problem statement 292

III. Two Simple Search Algorithms 293
A. Uniform random search 293
B. Pairwise exchange 293

IV. Configuration Selection Using Simulated Annealing 294
A. The SA algorithm 294
B. Selection of robot measurement configurations 295
C. Design of a practical cooling schedule 297
D. Simulation studies 299
E. Experimental results 300

V. Summary and References 305

13. PRACTICAL CONSIDERATIONS AND CASE STUDIES 307

I. Introduction 307

II. Practical Considerations 307

III. Calibration of a PUMA Arm 312
A. The system setup 312
B. PUMA calibration using a hand-mounted stereo cameras 313
C. PUMA calibration using a hand-mounted monocular camera 317

IV. Calibration of a SCARA Arm 323
A. The system setup 323
B. Calibration of an Intelledex robot 324

V. Summary and References 328

REFERENCES 331
APPENDICES

I. Summary of Basic Concepts in Matrix Theory 341
 A. Eigenvalues and eigenvectors 341
 B. Vector and matrix norms 341
 C. Singular value decomposition 342

II. Least Squares Techniques 343
 A. Linear least squares 343
 B. Nonlinear least squares 343

III. Sensitivity Analysis 344

INDEX 347