Contents

PREFACE AND ACKNOWLEDGMENTS xi

1. Introduction: Metastable Liquids in Nature and Technology 1
 1.1 Introduction 2
 1.1.1 Definitions 2
 1.1.2 Two Experiments: Superheated and Supercooled Water in the Laboratory 5
 1.2 Metastable Liquids in Nature 9
 1.2.1 Life at Low Temperatures 9
 1.2.2 Proteins at Low Temperatures 14
 1.2.3 The Ascent of Sap in Plants 20
 1.2.4 Mineral Inclusions 25
 1.2.5 Clouds 27
 1.3 Metastable Liquids in Technology 32
 1.3.1 Storage of Proteins and Cells by Supercooling 32
 1.3.2 Some Uses of Liquids under Tension 34
 1.3.3 Vapor Explosions 39
 1.3.4 Kinetic Inhibition of Natural Gas Clathrate Hydrates 47
 References 51

2. Thermodynamics 63
 2.1 Phenomenological Approach: Stability Criteria 64
 2.2 Phenomenological Approach: Stability of Pure Fluids 66
 2.2.1 Superheated Liquids 68
 2.2.2 The Spinodal Envelope 71
 2.2.3 The van der Waals Fluid 71
 2.2.4 Pseudocritical and Critical Exponents 72
 2.2.5 Stability Limit Predictions with Equations of State 81
 2.2.6 Continuity and Divergences in Superheated Liquids 83
 2.2.7 The "Pseudospinodal" 90
 2.2.8 Liquids That Expand When Cooled: The Stability Limit Conjecture 93
2.2.9 Metastable Phase Equilibrium 100
2.3 Phenomenological Approach: Stability of Fluid Mixtures 105
 2.3.1 Binary Mixtures 105
 2.3.2 Multicomponent Mixtures 115
2.4 Critique of the Phenomenological Approach: Metastability and Statistical Mechanics 121
2.5 Stability of Liquids with Respect to Crystalline Solids 133
References 136

3. Kinetics 147
 3.1 Homogeneous Nucleation 148
 3.1.1 Classical Nucleation Theory 148
 3.1.2 Energetics of Embryo Formation: Rigorous Approaches 159
 3.1.3 Kinetic Nucleation Theories 171
 3.1.4 Homogeneous Nucleation in Superheated Liquids 176
 3.1.5 Homogeneous Nucleation in Supercooled Liquids 187
 3.1.6 The Approach to Steady State 196
 3.2 Spinodal Decomposition 199
 3.3 The Transition From Nucleation to Spinodal Decomposition 209
 3.4 Heterogeneous Nucleation 216
References 223

4. Supercooled Liquids 235
 4.1 Crystallization and Vitrification 236
 4.2 Elementary Phenomenology of Vitrification upon Supercooling 241
 4.3 Thermodynamic Viewpoint of the Glass Transition 246
 4.3.1 Kauzmann’s Paradox 247
 4.3.2 Cooperative Relaxations and the Entropy Viewpoint 253
 4.3.3 Free Volume Theory 272
 4.4 Dynamic Viewpoint of the Glass Transition: Mode Coupling 282
 4.5 Strong and Fragile Liquids 301
 4.6 Supercooled and Glassy Water 305
 4.6.1 Experiments 306
 4.6.2 Interpretation 311
 4.6.3 Glassy Water 330
 4.7 Computer Simulation of Supercooled Liquids 335
References 345