Ill-Posed Problems with A Priori Information

V.V. Vasin and A.L. Ageev

Utrecht, The Netherlands, 1995
CONTENTS

Introduction 1

CHAPTER 1. UNSTABLE PROBLEMS
§1 Base formulations of problems 5
 1.1. Operator equations and systems 5
 1.2. The eigen-subspace determination of a linear operator 7
§2 Ill-posed problems examples and its stability analysis 8
 2.1. The problem of gravimetry 8
 2.2. Integral equations in structure investigations of disorder materials 10
 2.3. The computerized tomography 13
§3 The classification of methods for unstable problems with a priori information 14
 3.1. Tikhonov’s method 15
 3.2. The compact imbedding method 16
 3.3. Linear iterative processes 16
 3.4. α-processes 17
 3.5. The descriptive regularization 17
 3.6. Iterative processes with quasi-contractions 18
 3.7. The iterative regularization method 19
 3.8. Combined methods 20
 3.9. Method of the regularization and penalties 20
 3.10. Methods of the mathematical programming 21

CHAPTER 2. ITERATIVE METHODS FOR APPROXIMATION OF FIXED POINTS AND THEIR APPLICATION TO ILL-POSED PROBLEMS
§1 Basic classes of mappings 23
 1.1. Quasi-nonexpansive and pseudo-contractive mappings 24
 1.2. Existence of fixed points 25
§2 Convergence theorems for iterative processes 29
 2.1. Strong convergence of iterations for quasi-contractions 29
 2.2. Weak convergence of iterations for pseudo-contractions 31
§3 Iterations with correcting multipliers 32
 3.1. Stability of fixed points from parameter 33
 3.2. Strong iterative approximation of fixed points 34
 3.3. Generalization of results to quasi-nonexpansive operators 35
§4 Applications to problems of mathematical programming
4.1. Setting of a problem and definition of well-posedness
4.2. Prox-algorithm for minimization of convex functional
4.3. Fejer processes for convex inequalities system
4.4. Iterative processes for solution of operator equations with a priori information
4.5. The gradient projection method for convex functional
4.6. Minimization of quadratic functional

§5 Regularizing properties of iterations
5.1. Iterations with perturbed data and construction of regularizing algorithm
5.2. Disturbance analysis for the Fejer processes
5.3. Analysis of solution stability in the projection gradient method

§6 Iterative processes with averaging
6.1. Formulation of the method and preliminary results
6.2. The convergence theorem
6.3. Stability with respect to perturbations. Weak regularization
6.4. The Mann iterative processes

§7 Iterative regularization of variational inequalities and of operator equations with monotone operators
7.1. Formulation of problem
7.2. The method of successive approximation in well-posed case
7.3. Convergence of the iteratively regularized method of successive approximations
7.4. Strong convergence of the Mann processes

§8 Iterative regularization of operator equations in the partially ordered spaces
8.1. Preliminary information
8.2. The convergence of iterations for monotonically decomposable operators
8.3. Explicit iterative processes for operator equations of the first kind
8.4. Monotone processes of Newton's type

§9 Iterative schemes based on the Gauss-Newton method
9.1. The two-step method
9.2. Iteratively regularized schemes of the Gauss-Newton method

CHAPTER 3. Regularization methods for symmetric spectral problems
§1 L-basis of linear operator kernel
1.1. Definition of L-basis and its properties
1.2. Measure of nearness between orthonormal bases
Contents

§2 Analogies of Tikhonov's and Lavrent'ev's methods
2.1. Tikhonov's method
2.2. Regularizing properties of Tikhonov's method
2.3. The Lavrent'ev method

§3 The variational residual method and the quasisolutions method
3.1. The residual method for linear operator kernel determination
3.2. Residual principle proof for determination of regularization parameter
3.3. Ivanov's quasisolutions method
3.4. Quasisolutions principle proof for choice of regularization parameter

§4 Regularization of generalized spectral problem
4.1. Gershgorin's domains for generalized spectral problem
4.2. Regularization method

Chapter 4. The Finite Moment Problem and Systems of Operators Equations

§1 Statement of the problem and convergence of finite-dimensional approximations
1.1. Statement of the infinite moment problem
1.2. The convergence theorem of approximations

§2 Iterative methods on the basis of projections
2.1. Convergence of iterations for exact data
2.2. Convergence of iterations in the presence of noise

§3 The Fejer processes with correcting multipliers
3.1. The finite moment problem in the form of inequalities
3.2. Finite dimensional approximation of normal solution
3.3. Application to integral equations of the first kind

§4 FMP regularization in Hilbert spaces with reproducing kernels
4.1. Definition of reproducing kernels and their properties
4.2. Representation of normal solution in the space $\tilde{W}^1[-1,1]$
4.3. Construction of the orthogonal polynomial system
4.4. Computation of the resolving system matrix
4.5. Regularized solution
4.6. Analysis of solution's sensitivity
4.7. Application to inversion of the Laplace transform

§5 Iterative approximation of solution of linear operator equation system
5.1. Problem formulation and construction of the method
5.2. Auxiliary results
5.3. Convergence theorems for exact and perturbed data
CHAPTER 5. DISCRETE APPROXIMATION OF REGULARIZING ALGORITHMS

§ 1 Discrete convergence of elements and operators
1.1. Strong and weak convergence of elements
1.2. Interpolation operators
1.3. Convergence theorems for operators
1.4. Discrete convergence in uniform convex spaces

§ 2 Convergence of discrete approximations for Tikhonov's regularizing algorithm
2.1. Convergence of regularized solutions
2.2. Finite-dimensional approximation. Sufficient conditions of convergence

§ 3 Applications to integral and operator equations
3.1. Mechanical quadrature method
3.2. Collocation method
3.3. Projection methods
3.4. Nonlinear integral equations
3.5. Discretization of Volterra equations. Self-regularization

§ 4 Interpolation of discrete approximate solutions by splines
4.1. Piecewise constant and piecewise linear interpolation
4.2. Parabolic and cubic splines
4.3. Approximation of a priori set

§ 5 Discrete approximation of reconstruction of linear operator kernel basis
5.1. Discrete measures of nearness
5.2. Finite-dimensional approximation of Tikhonov's method
5.3. Finite-dimensional approximation of the residual method
5.4. Discrete approximation of Ivanov's quasisolutions method

§ 6 Finite-dimensional approximation of regularized algorithms on discontinuous functions classes
6.1. Finite-dimensional approximation of function of unbounded operator
6.2. Discrete approximation of Tikhonov's method with special stabilizer
6.3. Regularizing algorithms on classes of discontinuous functions

CHAPTER 6. NUMERICAL APPLICATIONS

§ 1 Iterative algorithms for solving gravimetry problem
1.1. Regularization and discretization of base equation
1.2. Reconstruction of model solution

§ 2 Computing schemes for finite moment problem
2.1. Decomposition by means of Legendre polynomials and iterations with projections
2.2. Quadrature approximation and iterations with correcting multipliers 210
2.3. Numerical solution of the finite moment problem in the space with a reproducing kernel 211

§3 Methods for experiment data processing in structure investigations of amorphous alloys 214
3.1. Solution of EXAFS-equation by Tikhonov variational method 214
3.2. Approximation algorithms for the kernel of an integral operator 216
3.3. A priori information accounting for EXAFS 218
3.4. Uniqueness for the diffraction equation 219
3.5. Iterative algorithm for solving the diffraction equation 221
3.6. Algorithm for solving an integral equations system 221

APPENDIX. Correction parameters methods for solving integral equations of the first kind
1. The error model and problem statement 226
2. Algorithms of the parameter correction 229
3. The discussion. The results of numerical experiments 232

Bibliography 237