LES HOUCHES
SESSION LVIII
10 August – 4 September 1992

LES PROGRÈS DU TRAITEMENT DES IMAGES
PROGRESS IN PICTURE PROCESSING

édité par
H. MAÎTRE et J. ZINN-JUSTIN

NH
1996
ELSEVIER
CONTENTS

Lecturers ix
Participants xi
Préface xv
Preface xix

Course 1. Discretization – problems and solutions,
by G. Borgefors

1. Introduction 5
2. Grids 5
 2.1. Regular and semiregular grids 5
 2.2. Grid properties 10
 2.2.1. Hexagonal grid 11
 2.2.2. Square grid 14
 2.2.3. Triangular grid 15
 2.2.4. A semiregular grid 16
 2.3. Direction dependence 18
 2.4. Choosing grid 21
3. Hierarchies 21
 3.1. Triangular and square grids 21
 3.2. Hexagonal grid 23
 3.3. The semiregular grid 24
4. Distance transforms in the square grid 26
 4.1. Basic concepts 28
 4.2. Path generated distance transforms 30
 4.2.1. City block distance transform 30
 4.2.2. Chessboard distance transform 31
 4.2.3. Octagonal distance transforms 31
 4.2.4. Other path generated distance transforms 32
 4.2.5. Illustrating distance transforms 32
 4.3. Weighted distance transforms, 3 × 3 neighbourhood 32
 4.3.1. Optimal local distances 34
 4.3.2. Integer local distances 38

xxv
4.4. Weighted distance transforms, 5 × 5 neighbourhood
 4.4.1. Optimal local distances
 4.4.2. Integer local distances
4.5. Euclidean distance transform
4.6. Comparisons between distance transforms
 4.6.1. Path generated distance transforms revisited
 4.6.2. Error functions
4.7. Sequential computation
 4.7.1. Chamfering
 4.7.2. Octagonal distance transform
 4.7.3. Euclidean distance transform
4.8. Parallel computation
 4.8.1. General algorithm
 4.8.2. Efficient algorithm for 3 × 3 integer distance transforms
 4.8.3. Euclidean distance transform
4.9. Choosing the “best” distance transform
4.10. Extensions to 3D imagery
5. Distance transforms in the hexagonal grid
 5.1. Honeycomb distance transform
 5.2. Weighted distance transforms
 5.2.1. Optimal distance transform, 6-pixel neighbourhood
 5.2.2. Optimal distance transform, 12-pixel neighbourhood
 5.2.3. Integer distance transforms, 12-pixel neighbourhood
 5.3. Comparisons between distance transforms
 5.4. Sequential computation
 5.5. Parallel computation
 5.6. Comparisons between hexagonal and square distance transforms
6. Applications of distance transforms
 6.1. Simple morphology
 6.2. Skeletonization and reconstruction
 6.2.1. Layers
 6.2.2. Centres of maximal discs
 6.2.3. Skeletons
 6.3. Dirichlet tessellations
 6.4. Matching
References

Course 2. Entropy, information and image, by H. Maître

Abstract
1. Entropy and physics
 1.1. Thermodynamical point of view
 1.2. Mechanical statistics and entropy
Course 3. Feature extraction, by P. Zamperoni

1. General concepts
 1.1. The stand of feature extraction in the image processing scenery
 1.2. The aim of feature extraction
2. Single-feature maps
 2.1. Features characterizing regions with uniform grey value
 2.1.1. Noisy plateau model
 2.1.2. Textured regions
 2.2. Edge features
 2.2.1. The gradient as feature
 2.2.2. The pseudo-Laplacian
 2.2.3. Edge features obtained by combining differentiation and smoothing
 2.3. Features expressing the degree of local detail
 2.3.1. Grey value moments
 2.3.2. “Busyness”
 2.3.3. Coarseness
 2.3.4. Measures of local spatial order
 2.4. Features describing the local anisotropy
2.4.1. The “General picture processing operator” 140
2.4.2. Local anisotropy measures 141
2.4.3. Degree of match with a line model as a feature 143

2.5. Textural features 145
2.5.1. Features extracted from the first-order statistics 145
2.6. Features extracted from transformations of the first-order statistics 148
2.6.1. Features extracted from the second-order statistics.
 Cooccurrence matrices 149

3. Feature extraction from binary images 153
3.1. Features from iconic representations of binary images 153
3.1.1. Global features computed by summation of local features 154
3.1.2. Connectivity number and coefficient of curvature 155
3.2. Shape feature extraction from chain-coded binary images
 (non-iconic representation) 158
3.2.1. Digital straight line segments (DSLS) 159
3.2.2. Local concavity, local convexity, smoothing and area 159
3.2.3. Corner finding (feature “cornerity”) 163

4. Feature spaces in image analysis 166
4.1. Multidimensional feature vectors 166
4.2. Cluster analysis in feature spaces 168
4.3. Hints to feature extraction 171
4.4. Neighbourhood grey values as features 173
4.5. Feature vectors – practical hints 176
4.6. Combinations of single-feature feature maps for texture segmentation 176
4.6.1. Method of Davis and Tychon ([15]) 176
4.6.2. Method of Khotanzad and Chen ([37]) 177
4.7. The shape as feature 178
4.7.1. “Naive” match between contour chains of equal lengths 179
4.7.2. Shape diversity measures based on the dynamic programming 179
4.7.3. Nonlinear elastic matching (NEM) 180
4.7.4. Weighted Levenshtein distance (WLD) 181
4.7.5. Extended distance (ED) 181
4.7.6. Metric properties of the NEM, WLD and ED 182

References 182

Course 4. Image identification and restoration, by
J. Biemond and R.L. Lagendijk 185

Summary 188
1. The image identification and restoration problem 188
 1.1. Introduction 188
 1.2. Restoration methods 191
 1.3. Identification methods 193

xxviii
Course 5. *Recent advances in image coding, by N. Farvardin* 233

1. Introduction 236
 1.1. Objective 236
 1.2. What is signal compression? 236
 1.3. Overview of image compression 237
 1.4. Performance criteria 240
 1.4.1. Reconstruction quality 240
 1.4.2. Encoding rate 241
 1.4.3. Coding complexity 241
 1.4.4. Delay 241
 1.4.5. Other issues 242
 1.5. Practical examples 242

References 228
Course 6. Motion analysis: framework, trends, application to image sequence coding, by C. Labit

Abstract

1. An introduction to motion analysis
 1.1. General typology for 2D motion analysis
 1.2. Moving object detection
 1.3. Estimation of 2D apparent motion vector fields
 1.4. Relations between 2D and 3D motions
 1.5. Estimation–segmentation cooperative processes
 1.6. Qualitative interpretation of dynamic scenes
 1.7. Conclusion

2. Algorithmic framework for monogrid estimation schemes
 2.1. Block matching algorithms
 2.2. Iterative-recursive estimators
 2.3. General framework of Markov random fields models

3. Multigrid estimation schemes
 3.1. Multigrid, multiscale, multiband techniques
 3.2. Usual multiresolution extensions
 3.3. Introduction in subband image sequence coding
4. New emerging trends
 4.1. Motion and structure identification for “semantic” coding 292
 4.2. Stereo-motion cooperation for 3DTV 292
 4.3. Temporal linking of spatiotemporal segmentation 294
 4.4. Spatiotemporal adaptive quality of reconstruction 295
5. Conclusion 296
References 296

Course 7. 3D Object processing, by T. Kasvand 301

Abstract 305
1. Introduction 306
2. A triangulating range scanner 309
3. Some numerical differential geometry 311
4. Method and problem “subspace” 313
 4.1. Classical 313
 4.2. Reasoning 314
 4.3. Reaction 314
 4.4. Mobility 314
 4.5. Manipulation 315
5. Reaction, mobility, and recognition 315
 5.1. Distance 315
 5.2. Hidden way 316
 5.3. Movement 316
 5.4. Map 316
 5.5. Objective 317
6. 3D range image processing 317
 6.1. Direct attack methods 318
 6.2. Methods derived from image processing 318
 6.3. Exhaustive search 319
7. A more general approach to processing $Z(x, y)$ 319
 7.1. Introducing constraints 320
 7.2. Methodology 321
 7.3. Grouping pixels 322
 7.3.1. Selection of features 322
 7.3.2. Labeling regions 323
 7.3.3. Analytic approximation 323
 7.3.4. Spatial relaxation of labels 323
 7.3.5. Description of regions 326
 7.4. Final processing 326
8. Multiple $Z(x, y)$ images 328
 8.1. Space representation 328
 8.2. Optical flow hypothesis 330

xxxi
8.3. Motion estimation in $Z(x, y)$ images 332
8.4. Proposals to separate self-motion from moving objects 334
 8.4.1. Step 1 334
 8.4.2. Step 2 334
 8.4.3. Step 3 334
 8.4.4. Step 4 334
 8.4.5. Step 5 335
 8.4.6. Step 6 335
 8.4.7. Step 7 335
9. Symbols and machines 336
10. Conclusions 342
11. Appendices 343
 11.1. Appendix 1. Point features from polynomial approximation 343
 11.2. Appendix 2. Point features from simulation 346
References 348