THE COLLECTED WORKS OF LARS ONSAGER
(with commentary)

Editors

P. C. Hemmer
H. Holden
S. Kjelstrup Ratkje

Norges tekniske høgskole,
Trondheim, Norway

World Scientific
Singapore • New Jersey • London • Hong Kong
CONTENTS

Bibliography — Lars Onsager .................................................. 1

Lars Onsager 1903–1976 — A Biographical Memoir ............................. 9
  H. Christopher Longuet-Higgins and Michael E. Fisher

[81] Autobiographical commentary by Lars Onsager .......................... 37

Nobel Presentation Speech S. Claesson ....................................... 43
[75] The motion of ions: principles and concepts (Nobel Lecture) ............ 46

IRREVERSIBLE PROCESSES

Onsager’s reciprocal relations and thermodynamics of irreversible processes . 61
  Commentary by P. Mazur

[6] Simultaneous irreversible processes (abstract) ................................ 71
[7] Simultaneous irreversible processes (abstract) ................................ 72
[8] Reciprocal relations in irreversible processes. I. ............................. 73
[9] Reciprocal relations in irreversible processes. II. ............................ 95
[20] Separation of gas (isotope) mixtures by irreversible processes (abstract) . 123
[22] Turbulence in convection in gases between concentric vertical cylinders . 124
[23] Separation of isotopes by thermal diffusion (abstract) ......................... 127
[27] Theories and problems of liquid diffusion .................................... 128
[34] Apparatus for isotope separation by thermal diffusion ......................... 153
[36] A general theory for the Guoy diffusion method ............................... 157
  Onsager’s application for a doctoral degree at NTH (Comment by the editors) ... 166

THE ISING MODEL

The Ising model ........................................................................... 167
  Commentary by C. Domb

Path crossings with Lars Onsager ................................................. 180
  Commentary by C. N. Yang

[25] Crystal statistics (abstract) .................................................... 182
[26] Crystal statistics. I. A two-dimensional model with an order-disorder transition ... 182
[29] Transition points ..................................................................... 215
[32] Crystal statistics. III. Short-range order in a binary Ising lattice ............ 223
[80] The Ising model in two dimensions ........................................... 232
ELECTROLYTES

Lars Onsager's contribution to electrolyte theory ........................................... 243
Commentary by W. Ebeling and J.-C. Justice

[3] Zur Theorie der Elektrolyte. II. ......................................................... 256
[5] Activity coefficients and mass-action law in electrolytes .......................... 287
[10] Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow
    in arbitrary mixtures of strong electrolytes ...................................... 293
[12] Theories of concentrated electrolytes ............................................... 383
[13] The surface tension of Debye-Hückel electrolytes .................................. 400
[14] Deviations from Ohm's law in weak electrolytes ................................. 409
[42] Conductance of strong electrolytes at finite dilutions .......................... 426
[44] Wien effect in simple strong electrolytes ......................................... 436
[45] The relaxation effects in mixed strong electrolytes ............................. 453
[46] Conductance of unassociated electrolytes ......................................... 468
[47] The kinetic term in electrolytic conductance ...................................... 483
[54] Thermodynamic potentials of symmetric electrolytes ............................ 485
[56] The conductance of symmetrical electrolytes. I. Potential of total force .. 493
[59] The conductance of symmetrical electrolytes. II. The relaxation field .... 498
[60] The conductance of symmetrical electrolytes. III. Electrophoresis .......... 505
[63] A correction to the Poisson-Boltzmann equation for unsymmetrical electrolytes 510
[64] The conductance of symmetrical electrolytes. IV. Hydrodynamic and osmotic terms
    in the relaxation field ............................................................... 513
[67] Zur Theorie des Wieneffekts in schwachen Elektrolyten ......................... 521
[68] The conductance of symmetrical electrolytes. V. The conductance equation .. 526
[74] Relaxation effects in associating electrolytes .................................... 540
[78] The conductivity of strong electrolytes at finite dilution (abstract) ....... 547
[84] The effects of wall charge on the capillary rise of electrolytes .................. 548
[91] The integral representation of the relaxation effects in mixed strong electrolytes
    in the limiting law region ............................................................. 582
[92] The generalized conductance equation ................................................ 584
[93] Kinetic polarization deficiency in electrolyte solutions ......................... 589
[94] Dielectric dispersion and dielectric friction in electrolyte solutions. I. .... 593

ELECTRONS IN METAL

Onsager's papers on electrons in metals ...................................................... 601
Commentary by A. B. Pippard

[30] De Haas-van Alphen effect in zinc (abstract) ................................... 603
[35] Interpretation of the de Haas-van Alphen effect .................................. 604
[40] Diamagnetism in metals ................................................................. 607
[49] Many-electron wave function .......................................................... 614
[66] Electrons in metals ............................................................................. 615
[70] Integrals in the theory of electron correlations .................................... 629
COLLOIDS

Impact of particle shape on the physics of colloidal suspensions ..................637
Commentary by H. N. W. Lekkerkerker and T. Odijk

[31] The effects of shape on the interaction of colloidal particles .................640

DIELECTRICS

The dielectric constant and mean electrostatic energy of molecular fluids ....673
Commentary by George Stell

[16] Electric moments of molecules in liquids .............................................676
[41] Electrostatic interaction of molecules ...................................................684

HELIUM II AND VORTEX QUANTIZATION

Onsager’s quantization of circulation in superfluid helium ......................693
Commentary by Russell J. Donnelly

[41] Introductory talk [on liquid helium] .....................................................697
[62] Helium II .......................................................................................701
[89] Electrons and vortex lines in He II, I. Brownian motion theory of
  capture and escape ...........................................................................709
[90] Electrons and vortex lines in He II, II. Theoretical analysis of capture
  and release experiments .....................................................................720

OFF-DIAGONAL LONG-RANGE ORDER AND FLUX QUANTIZATION

Off-diagonal long-range order and flux quantization .................................729
Commentary by P. W. Anderson

[43] Bose-Einstein condensation and liquid helium .......................................732
[53] Magnetic flux through a superconducting ring .....................................741

TURBULENCE

Onsager’s contribution to turbulence theory:
Vortex dynamics and turbulence in ideal flow ........................................743
Commentary by A. Chorin

[28] The distribution of energy in turbulence (abstract) ...............................746
[33] Statistical hydrodynamics ....................................................................747

ION RECOMBINATION

Onsager’s contribution to reaction-rate theory ........................................757
Commentary by George Weiss

[17] Initial recombination of ions ...............................................................760
[87] Asymptotic forms for luminescent intensity due to donor-acceptor
  pair recombination ............................................................................764
FLUCTUATION THEORY

Onsager and Machlup's work on fluctuations in statistical physics .......... 769
Commentary by Henry McKean

[38] Fluctuations and irreversible processes ........................................ 772
[39] Fluctuations and irreversible processes. II. Systems with kinetic energy .......... 779

ICE AND WATER

Ice and related topics ................................................................. 783
Commentary by John F. Nagle

[52] The electrical properties of ice ...................................................... 786
[57] The electrical properties of ice ...................................................... 808
[58] The electrical properties of ice ...................................................... 811
[61] Mechanism for self-diffusion in ice .................................................. 831
[69] Protonic semiconductors ............................................................ 834
[71] Ferroelectricity of ice? ............................................................... 837
[76] Diffusion and relaxation phenomena in ice ........................................ 841
[77] Protonic semiconductors ............................................................ 856
[82] Introductory lecture [on ice] .......................................................... 862
[86] Interpretation of kinetic and equilibrium properties [of water] .............. 868
[88] Hopping of ions in ice ............................................................... 875
[95] Electrical effects during condensation and phase transitions of ice .......... 890

BIOLOGY

Biology ................................................................. 897
Commentary by John F. Nagle

[72] Thermodynamics and some molecular aspects of biology .................... 899
[73] Ion passages in lipid bilayers ...................................................... 904
[79] Possible mechanisms of ion transit ............................................... 905
[83] Life in the early days ............................................................... 908

MATHIEU FUNCTIONS

Lars Onsager's thesis ................................................................. 921
Commentary by R. Askey

[15] Solutions of the Mathieu equation of period $4\pi$ and certain related functions .......... 923

OTHER TOPICS

[48] Low temperature fluctuations ...................................................... 989
[50] Proton magnetic resonance spectrum of propane ................................ 992
[51] Surface specific heat of an isotropic solid at low temperatures ............ 997
[65] Electrons in liquids ............................................................... 1007
[85] Surface specific heat of crystals. I .............................................. 1013

Onsager discussion remarks in print ............................................. 1067
Reprinted discussion remarks .................................................... 1070