CONTENTS

Preface v

Chapter 1. Introduction 1

1.1 General Nature of the Optimum Design Problem 1
1.2 The Role of Statistical Methods of Analysis 3
1.3 Stationary and Nonstationary Problems 4
1.4 Performance Index of a System 5
1.5 Organization of Text 7

Chapter 2. Basic Concepts of Probability Theory 9

2.1 Introduction 9
2.2 Sets and Set Operations 10
2.3 Point Functions and Set Functions 14
2.4 Axioms of Probability 17
2.5 Independence of Events and Conditional Probability 22
2.6 Random Variables 28
2.7 Probability Distribution and Frequency Functions 34
2.8 Expectation, Mean, Variance, and Moments 45
2.9 Characteristic Functions 57
2.10 The Binomial Distribution 62
2.11 The Poisson Distribution 63
2.12 The Normal Distribution and the Central-limit Theorem 67
2.13 The Multidimensional Normal Distribution 73

Chapter 3. The Statistical Description of Random Processes 90

3.1 Introductory Remarks 90
3.2 Random Processes 92
3.3 Probability Distributions and Statistical Parameters 94
3.4 Joint Distributions for Two or More Random Processes 100
3.5 Stationary and Ergodic Random Processes 105
3.6 Power Spectral Density 120
3.7 Further Examples of Random Processes 136

Chapter 4. The Shot Effect and Gaussian Random Processes 147

4.1 The Shot Effect 147
4.2 The Gaussian Random Process 155
4.3 The Empirical Determination of Correlation Functions 160
4.4 Correlation Function of the Output of Simple Nonlinear Devices 163
4.5 Analysis of an Automatic Tracking System 171
CONTENTS

CHAPTER 5. ANALYSIS OF EFFECTS OF TIME INVARIANT LINEAR SYSTEMS ON STATIONARY RANDOM PROCESSES

5.1 Filtering and Prediction ... 177
5.2 The Response Characteristics of Linear Systems 182
5.3 Input-Output Relations for Correlation Functions and Spectral Densities .. 194
5.4 A General Class of Filtering and Prediction Problems 201
5.5 The Analytical Computation of the Mean-squared Error 207
5.6 Analogue Computation Techniques 218

CHAPTER 6. MEAN-SQUARED ERROR ANALYSIS FOR NONSTATIONARY PROBLEMS

6.1 General Integral Formulas for Mean-squared Errors 225
6.2 Transient Statistical Analysis of a Time-invariant Linear System ... 230
6.3 Frequency Methods for Transient Analysis of Linear Systems ... 234
6.4 The Method of Adjoint Systems 239
6.5 Continuous Generation of Mean-squared Errors 247
6.6 Optimum Design Procedure for a Class of Variable-coefficient Systems by a Method of Steepest Descents 253

CHAPTER 7. OPTIMUM LINEAR LEAST-SQUARES SMOOTHING AND PREDICTION FOR STATIONARY RANDOM PROCESSES

7.1 Formulation of the Wiener Smoothing and Prediction Problem ... 269
7.2 Pure Prediction ... 272
7.3 The Method of Bode and Shannon 276
7.4 Analytic Solution of the Wiener-Hopf Equation Using Complex Variable Techniques 280
7.5 Direct Solution of the Wiener-Hopf Equation for Rational Spectra ... 283

CHAPTER 8. OPTIMUM OPERATIONS WITH FINITE DATA

8.1 Introductory Remarks ... 291
8.2 Prediction Involving Unknown Linear Combinations of Known Functions in the Presence of Noise 300
8.3 Prediction Involving Statistically Known Linear Combinations of Known Functions in the Presence of Noise 305
8.4 The Integral Equation for the Stationary Case 309
8.5 The Integral Equation for the Nonstationary Case 329
8.6 Prediction and Filtering in the Presence of Gaussian Interference ... 343

APPENDIX A. Evaluation of an Integral Occurring in the Analysis of Certain Nonlinear Devices 359

APPENDIX B. Stationary Gaussian Noise through a Limiter 361

APPENDIX C. Analogue Computers

C.1 Introduction .. 366
C.2 Theory of Operation of the Linear Computing Elements 366