Contents

Preface vii
Introduction 1
0 Preliminaries 5
0.1 Miscellany 5
0.2 Some Probability 11
0.3 Matrices 21
1 An Introduction to Codes 25
1.1 Strings and Things 25
1.2 What Are Codes? 33
1.3 Uniquely Decipherable Codes 37
1.4 Instantaneous Codes and Kraft’s Theorem 42
I Information Theory 51
2 Efficient Encoding 53
2.1 Information Sources; Average Codeword Length 53
2.2 Huffman Encoding 57
2.3 The Proof that Huffman Encoding Is the Most Efficient 63

3 Noiseless Coding 69
3.1 Entropy 69
3.2 Properties of Entropy 75
3.3 Extensions of an Information Source 79
3.4 The Noiseless Coding Theorem 82

II Coding Theory 89

4 The Main Coding Theory Problem 91
4.1 Communications Channels 91
4.2 Decision Rules 97
4.3 Nearest Neighbor Decoding 103
4.4 The Minimum Distance of a Code 106
4.5 Perfect Codes and the Sphere-Packing Condition 116
4.6 Making New Codes from Old Codes 124
4.7 The Main Coding Theory Problem 131
4.8 Sphere-Covering and Sphere-Packing Bounds 138
4.9 The Singleton and Plotkin bounds 142
4.10 Information Theory Revisited—the Noisy Coding Theorem 146

5 Linear Codes 149
5.1 The Vector Space \mathbb{Z}_p^n 149
5.2 Linear Codes 163
5.3 Correcting Errors in a Linear Code 169
5.4 The Dual of a Linear Code 182
5.5 Syndrome Decoding 195
5.6 Equivalent Linear Codes 199
5.7 Source Encoding with a Linear Code 208

6 Some Special Codes 217
6.1 The Hamming and Golay Codes 217
6.2 Reed-Muller Codes 234
6.3 Some Decimal Codes 245
6.4 Codes from Latin Squares 258