Numerical Methods for Unconstrained Optimization and Nonlinear Equations

J. E. Dennis, Jr.
Rice University
Houston, Texas

Robert B. Schnabel
University of Colorado
Boulder, Colorado

Society for Industrial and Applied Mathematics
Philadelphia
Contents

PREFACE TO THE CLASSICS EDITION xi
PREFACE xiii

|| 1 ||
INTRODUCTION 2

1.1 Problems to be considered 2
1.2 Characteristics of "real-world" problems 5
1.3 Finite-precision arithmetic and measurement of error 10
1.4 Exercises 13

|| 2 ||
NONLINEAR PROBLEMS IN ONE VARIABLE 15

2.1 What is not possible 15
2.2 Newton’s method for solving one equation in one unknown 16
2.3 Convergence of sequences of real numbers 19
2.4 Convergence of Newton’s method 21
2.5 Globally convergent methods for solving one equation in one unknown 24
2.6 Methods when derivatives are unavailable 27
2.7 Minimization of a function of one variable 32
2.8 Exercises 36
NUMERICAL LINEAR ALGEBRA BACKGROUND

3.1 Vector and matrix norms and orthogonality 41
3.2 Solving systems of linear equations—matrix factorizations 47
3.3 Errors in solving linear systems 51
3.4 Updating matrix factorizations 55
3.5 Eigenvalues and positive definiteness 58
3.6 Linear least squares 60
3.7 Exercises 66

MULTIVARIABLE CALCULUS BACKGROUND 69

4.1 Derivatives and multivariable models 69
4.2 Multivariable finite-difference derivatives 77
4.3 Necessary and sufficient conditions for unconstrained minimization 80
4.4 Exercises 83

NEWTON'S METHOD FOR NONLINEAR EQUATIONS AND UNCONSTRAINED MINIMIZATION 86

5.1 Newton's method for systems of nonlinear equations 86
5.2 Local convergence of Newton's method 89
5.3 The Kantorovich and contractive mapping theorems 92
5.4 Finite-difference derivative methods for systems of nonlinear equations 94
5.5 Newton's method for unconstrained minimization 99
5.6 Finite-difference derivative methods for unconstrained minimization 103
5.7 Exercises 107

GLOBALLY CONVERGENT MODIFICATIONS OF NEWTON’S METHOD 111

6.1 The quasi-Newton framework 112
6.2 Descent directions 113
6.3 Line searches 116
6.3.1 Convergence results for properly chosen steps 120
6.3.2 Step selection by backtracking 126
6.4 The model-trust region approach 129
6.4.1 The locally constrained optimal ("hook") step 134
6.4.2 The double dogleg step 139
6.4.3 Updating the trust region 143
6.5 Global methods for systems of nonlinear equations 147
6.6 Exercises 152
7. Scaling 155
7.2 Stopping criteria 159
7.3 Testing 161
7.4 Exercises 164

8. Secant methods for systems of nonlinear equations 168
8.1 Broyden's method 169
8.2 Local convergence analysis of Broyden's method 174
8.3 Implementation of quasi-Newton algorithms using Broyden's update 186
8.4 Other secant updates for nonlinear equations 189
8.5 Exercises 190

9. Secant methods for unconstrained minimization 194
9.1 The symmetric secant update of Powell 195
9.2 Symmetric positive definite secant updates 198
9.3 Local convergence of positive definite secant methods 203
9.4 Implementation of quasi-Newton algorithms using the positive definite secant update 208
9.5 Another convergence result for the positive definite secant method 210
9.6 Other secant updates for unconstrained minimization 211
9.7 Exercises 212

10. Nonlinear least squares 218
10.1 The nonlinear least-squares problem 218
10.2 Gauss-Newton-type methods 221
10.3 Full Newton-type methods 228
10.4 Other considerations in solving nonlinear least-squares problems 233
10.5 Exercises 236

11. Methods for problems with special structure 239
11.1 The sparse finite-difference Newton method 240
11.2 Sparse secant methods 242
11.3 Deriving least-change secant updates 246
11.4 Analyzing least-change secant methods 251
11.5 Exercises 256
APPENDIX: A MODULAR SYSTEM OF ALGORITHMS FOR UNCONSTRAINED MINIMIZATION AND NONLINEAR EQUATIONS 259
(by Robert Schnabel)

APPENDIX: TEST PROBLEMS 361
(by Robert Schnabel)

REFERENCES 364

AUTHOR INDEX 371

SUBJECT INDEX 373