Contents

C. Generating Functions ... 16
D. Cumulant Generating Function 17
E. Characteristic Functions 17

Multivariate Distributions

- A. Discrete Case .. 17
- B. Continuous Case ... 17

Moments

- Marginal and Conditional Distributions 18

Probability Distributions

- A. Discrete Case .. 19
 1. Discrete Uniform Distribution 19
 2. Binomial Distribution 19
 3. Geometric Distribution 20
 4. Multinomial Distribution 20
 5. Poisson Distribution 20
 6. Hypergeometric Distribution 20
 7. Negative Binomial Distribution 21
- B. Continuous ... 21
 1. Uniform Distribution 21
 2. Normal Distribution 21
 3. Gamma Distribution 22
 4. Exponential Distribution 22
 5. Beta Distribution .. 22

Sampling Distributions

- 1. Chi-Square Distribution 23
 Reproductive Property of Chi-Square Distribution 23
- 2. Snedecor's F-Distribution 23
- 3. Student's t-Distribution 24

Summary of Significance Tests

- Testing for the Value of a Specified Parameter 25
- Comparison of Two Populations 26

Summary of Confidence Intervals

Analysis of Variance (ANOVA) Tables

- One-Way Classification 28
- Two-Way Classification With One Observation Per Cell 29
- Nested Classifications With Unequal Samples 30
- Nested Classifications With Equal Samples 31
- Fixed Model Two-Factor Factorial Experiment in a One-Way Classification Design 32
- Fixed Model Three-Factor Factorial Experiment in a Completely Randomized Design 33
- Latin Square .. 35
- Graeco-Latin Square .. 36
- Youden Square .. 36
- Balanced Incomplete Block (BIB) 37

General Linear Model

- 1. Notation ... 37
- 2. General Linear Model 38
 2.1 The Simple Regression Model 38
 2.2 Multiple Regression Model 39
 2.3 One-Way Classification Analysis of Variance 39
 2.4 Two-Way Classification (Two Factors Factorial) 40
 2.5 Analysis of Covariance 41
- 3. Summary of Rules for Matrix Operations 41
 3.1 Expectation .. 41
 3.2 Partitioning of Determinants 41
 3.3 Inverse of a Partitioned Matrix 42
 3.4 Characteristic Roots 42
 3.5 Differentiation .. 42
 3.6 Some Additional Definitions and Rules 43
- 4. Principle of Minimizing Quadratic Forms and Gauss-Markov Theorem 44
 4.1 Some Remarks on Multivariate Distributions 44
 4.2 The Principle of Least Squares 45
 4.3 Minimum Variance Unbiased Estimates 45
5. General Linear Hypothesis of Full Rank .. 46
 5.1 Notation ... 46
 5.2 Simple Linear Regression ... 47
 5.3 Analysis of Variance, One-Way Classification 47
 5.4 Multiple Linear Regression .. 48
 5.5 Randomized Blocks ... 49
 5.6 Quadratic Form Due to Hypothesis ... 50
 5.7 Sum of Squares Due to Error .. 50
 5.8 Summary ... 51
 5.9 Computational Procedure for Testing a Hypothesis 51
 5.10 Regression Significance Test .. 52
 5.11 Alternate Form of the Distribution .. 52

6. General Linear Model of Less Than Full Rank 52
 6.1 Estimable Function and Estimability 53
 6.2 General Linear Hypothesis Model of Less Than Full Rank 55
 6.3 Constraints and Conditions .. 56

Simplified Computations for Multiple Regression 58
Algebraic Procedure ... 58
Algebraic Procedure for the Forward Solution of the Abbreviated Doolittle Method .. 60
Tests of Significance ... 61
Backward Solution of the Abbreviated Doolittle Method 62

Plans for Design of Experiments ... 64
Selected Latin Squares .. 64
Graeco-Latin Squares ... 65
Index to Plans of Factorial Experiments Confounded in Randomized Incomplete Blocks.............................. 66
Confounded Designs for Other Factorial Experiments 67
Index to Plans for 2^n Factorials in Fractional Replication 73
Index to Plans, Incomplete Block Designs 84
Index to Plans, Incomplete Latin Squares 93

Main Effect and Interactions in 2^1, 2^2, 2^3 and 2^4 Factorial Designs ... 106

Finite Differences ... 110
Function Build-up from Differences .. 113
Interpolation ... 113
 Newton's Forward Formula .. 113
 Newton's Backward Formula .. 114
 Gauss' Forward Formula ... 114
 Gauss' Backward Formula ... 114
 Stirling's Formula .. 114
 Steffenson's Formula .. 114
 Bessel's Formula ... 114
 Everett's Formula ... 114
 Bessel's Formula (unmodified) ... 116
 Everett's Formula (unmodified) .. 116
 Generalized Throwback .. 118
 Symmetric Formulae for Interpolation to Halves 118
 Interpolation Techniques Which Do Not Require the Function to be Tabulated for Equal Interval of the Argument ... 119
 a) Lagrangian Polynomials .. 119
 b) Divided Differences .. 119
 c) Adjusted Divided Differences .. 120
 d) Iterative Linear Interpolation .. 122
 e) Gauss' Trigonometric Interpolation Formula 122
 f) Reciprocal Differences ... 123
Inverse Interpolation .. 124

Part II—NORMAL DISTRIBUTION

II.1 The Normal Probability Function and Related Functions 125
II.2 Tolerance Factors for Normal Distributions 135
II.3 Factors for Computing Probable Errors 140
II.4 Probability of Occurrence of Deviations 143
II.5 Operating Characteristic (OC) Curves for a Test on the Mean of a Normal Distribution With Known Standard Deviation 144
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6 Bivariate Normal Probabilities</td>
<td>147</td>
</tr>
<tr>
<td>11.7 Circular Normal Probabilities</td>
<td>151</td>
</tr>
<tr>
<td>11.8 Circular Error Probabilities</td>
<td>154</td>
</tr>
<tr>
<td>11.9 Charts of Upper 1%, 2.5%, and 5% Points of the Distribution of the Largest Characteristic Root</td>
<td>157</td>
</tr>
<tr>
<td>11.10 Probit Analysis</td>
<td>170</td>
</tr>
</tbody>
</table>

Part III—BINOMIAL, POISSON, HYPERGEOMETRIC, AND NEGATIVE BINOMIAL DISTRIBUTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1 Individual Terms, Binomial Distribution</td>
<td>182</td>
</tr>
<tr>
<td>III.2 Cumulative Terms, Binomial Distribution</td>
<td>194</td>
</tr>
<tr>
<td>III.3 Individual Terms, Poisson Distribution</td>
<td>206</td>
</tr>
<tr>
<td>III.4 Cumulative Terms, Poisson Distribution</td>
<td>212</td>
</tr>
<tr>
<td>III.5 Confidence Limits for Proportions</td>
<td>219</td>
</tr>
<tr>
<td>III.6 Confidence Limits for the Expected Value of a Poisson Distribution</td>
<td>238</td>
</tr>
<tr>
<td>III.7 Various Functions of p and $q = 1 - p$</td>
<td>240</td>
</tr>
<tr>
<td>III.8 Hypergeometric Distribution</td>
<td>245</td>
</tr>
<tr>
<td>III.9 Negative Binomial Distribution</td>
<td>250</td>
</tr>
<tr>
<td>III.10 Percentage Points of the Beta Distribution</td>
<td>251</td>
</tr>
<tr>
<td>III.11 Tests of Significance in 2×2 Contingency Tables</td>
<td>266</td>
</tr>
</tbody>
</table>

Part IV—STUDENT’S t-DISTRIBUTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.1 Percentage Points, Student’s t-Distribution</td>
<td>282</td>
</tr>
<tr>
<td>IV.2 Power Function of the t-Test</td>
<td>284</td>
</tr>
<tr>
<td>IV.3 Number of Observations for t-Test of Mean</td>
<td>286</td>
</tr>
<tr>
<td>IV.4 Number of Observations for t-Test of Difference Between Two Means</td>
<td>288</td>
</tr>
<tr>
<td>IV.5 Operating Characteristic (OC) Curves for a Test on the Mean of a Normal Distribution With Unknown Standard Deviation</td>
<td>290</td>
</tr>
</tbody>
</table>

Part V—CHI-SQUARE DISTRIBUTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.1 Percentage Points, Chi-Square Distribution</td>
<td>293</td>
</tr>
<tr>
<td>V.2 Percentage Points, Chi-Square Over Degrees of Freedom Distribution</td>
<td>295</td>
</tr>
<tr>
<td>V.3 Number of Observations for the Comparison of a Population Variance With a Standard Value Using the Chi-Square Test</td>
<td>299</td>
</tr>
<tr>
<td>V.4 Operating Characteristic (OC) Curves for a Test on the Standard Deviation of a Normal Distribution</td>
<td>300</td>
</tr>
</tbody>
</table>

Part VI—F-DISTRIBUTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.1 Percentage Points, F-Distribution</td>
<td>304</td>
</tr>
<tr>
<td>VI.2 Power Functions of the Analysis-of-Variance Tests</td>
<td>311</td>
</tr>
<tr>
<td>VI.3 Number of Observations Required for the Comparison of Two Population Variances Using the F-Test</td>
<td>320</td>
</tr>
<tr>
<td>VI.4 Operating Characteristic (OC) Curves for a Test on the Standard Deviation of Two Normal Distributions</td>
<td>322</td>
</tr>
<tr>
<td>VI.5 Cochran’s Test for the Homogeneity of Variances</td>
<td>325</td>
</tr>
<tr>
<td>VI.6 Percentage Points of the Maximum F-Ratio</td>
<td>328</td>
</tr>
</tbody>
</table>

Part VII—ORDER STATISTICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.1 Expected Values of Order Statistics From a Standard Normal Population</td>
<td>330</td>
</tr>
<tr>
<td>VII.2 Variances and Covariances of Order Statistics</td>
<td>332</td>
</tr>
<tr>
<td>VII.3 Confidence Intervals for Medians</td>
<td>338</td>
</tr>
<tr>
<td>VII.4 Critical Values for Testing Outliers</td>
<td>339</td>
</tr>
<tr>
<td>VII.5 Percentile Estimates in Large Samples</td>
<td>346</td>
</tr>
<tr>
<td>VII.6 Simple Estimates in Small Samples</td>
<td>348</td>
</tr>
</tbody>
</table>

Part VIII—RANGE AND STUDENTIZED RANGE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII.1 Probability Integral of the Range</td>
<td>351</td>
</tr>
<tr>
<td>VIII.2 Percentage Points, Distribution of the Range</td>
<td>360</td>
</tr>
<tr>
<td>VIII.3 Percentage Points, Studentized Range</td>
<td>361</td>
</tr>
<tr>
<td>VIII.4 Critical Values for Duncan’s New Multiple Range Test</td>
<td>368</td>
</tr>
<tr>
<td>VIII.5 Substitute t-Ratios</td>
<td>379</td>
</tr>
</tbody>
</table>
Contents

VIII.6 Substitute F-Ratio .. 382
VIII.7 Analysis of Variance Based on Range 385
VIII.8 Confidence Intervals for σ Based on Mean Range 387

Part IX—CORRELATION COEFFICIENT
IX.1 Percentage Points, Distribution of the Correlation Coefficient when $\rho = 0$ 389
IX.2 Confidence Limits for the Population Correlation Coefficient 391
IX.3 The Transformation $z = \tanh^{-1} r$ for the Correlation Coefficient 394

Part X—NON-PARAMETRIC STATISTICS
X.1 Critical Values for the Sign Test 397
X.2 Critical Values of T in the Wilcoxon Matched-Pairs Signed-Ranks Test 399
X.3 Probabilities for the Wilcoxon (Mann-Whitney) Two-Sample Statistic 401
X.4 Critical Values of U in the Wilcoxon (Mann-Whitney) Two-Sample Statistic 405
X.5 Critical Values for the Wilcoxon Rank Sum Test 409
X.6 Distribution of the Total Number-of-Runs Test 414
X.7 Critical Values for the Kolmogorov-Smirnov One-Sample Statistic 425
X.8 Critical Values for the Kolmogorov-Smirnov Two-Sample Statistic 427
X.9 Kruskal-Wallis One-Way Analysis of Variance by Ranks 430
X.10 Critical Values for a Sum of Ranks Procedure for Relative Spread in Unpaired Samples ... 433
X.11 Significant Values for a Rank-Sum Test for Dispersion 442
X.12 Critical Values of Spearman's Rank Correlation Coefficient 445
X.13 Critical Values of Kendall's Rank Correlation Coefficient 449

Part XI—QUALITY CONTROL
XI.1 Factors for Computing Control Limits 451
XI.2 Percentage Points of the Distribution of the Mean Deviation 455
XI.3 Cumulative Sum Control Charts (CSCC) 456
 A. CSCC for the Mean ... 456
 B. CSCC for Sample Ranges 458
 C. CSCC for Sample Variances 459
 D. CSCC for Number of Defectives, np, or Fraction Defective p 461
 E. CSCC for Number of Defects, c 463
 F. Summary of CSCC Limits 464

Part XII—MISCELLANEOUS STATISTICAL TABLES
XII.1 Number of Permutations .. 466
XII.2 Number of Combinations .. 467
XII.3 Logarithms of the Binomial Coefficients 472
XII.4 Random Units .. 479
XII.5 Random Normal Numbers, $\mu = 0, \sigma = 1$ 484
XII.6 Random Normal Numbers, $\mu = 2, \sigma = 1$ 494
XII.7 Random Normal Numbers, $\mu = 0, \sigma = 2$ 499
XII.8 Orthogonal Polynomials ... 504
XII.9 Percentage Points of Pearson Curves 518

Part XIII—MISCELLANEOUS MATHEMATICAL TABLES
XIII.1 Miscellaneous Constants ... 527
XIII.2 Numerical Constants .. 528
XIII.3 Radians to Degrees, Minutes, and Seconds 529
XIII.4 Natural Functions for Angles in Radians 530
XIII.5 Squares, Cubes, and Roots ... 532
XIII.6 Exponential Functions ... 549
XIII.7 Six-Place Logarithms .. 557
XIII.8 Natural or Naperian Logarithms 579
XIII.9 Factorials and Their Logarithms 587
XIII.10 Reciprocals of Factorials and Their Logarithms 589
XIII.11 Powers of Numbers .. 590
XIII.12 Sums of Powers of Integers 592
XIII.13 Integrals ... 594
XIII.14 Gamma Function ... 635

Index ... 637