INTRODUCTION TO MOLECULAR DYNAMICS AND CHEMICAL KINETICS

GERT D. BILLING
Department of Chemistry
H. C. Ørsted Institute
University of Copenhagen

KURT V. MIKKESEN
Department of Chemistry
Århus University
CONTENTS

Preface xi

1 Introduction 1

2 Interaction Potentials 3
 2.1 The Harmonic Potential, 3
 2.2 Three-Body Interaction, 7

3 Relative Motion 13

4 Collisional Approach 18
 4.1 The Reaction Cross Section, 19

5 Partition Functions 25
 5.1 Equilibrium Constants, 29

6 Transition State Theory 31

7 Generalized Transition State Theory 39

8 Theory for Unimolecular Reactions 45
 8.1 The High-Pressure Limit, 48
 8.2 The Low-Pressure Limit, 52
8.3 Calculation of the Density of States, 53
 8.3.1 Rotational Motion, 54
 8.3.2 Vibrational Motion, 55

9 Classical Dynamics 60
 9.1 Initialization, 63
 9.2 Final State Analysis, 66

10 Nonadiabatic Transitions 69
 10.1 The Two-State Case, 70

11 Surface Kinetics 75
 11.1 Introduction, 75
 11.2 Wall Collisions, 75
 11.3 The Adsorption Isotherm, 77
 11.4 Surface Diffusion, 80

12 Chemical Reactions in Solution 83
 12.1 Transportation of Matter in Solution, 83
 12.1.1 Mass Transfer, 83
 12.1.2 Microscopic View of Diffusion, 86
 12.1.3 Fick's Laws of Diffusion, 87
 12.2 Brownian Motion, 89
 12.3 An Application of Fick's Law, 94

13 Energetic Aspects of Solvent Effects on Solutes 98
 13.1 Introduction, 98
 13.2 The Dielectric Medium Representation, 99
 13.3 Nonequilibrium Solvent Configuration, 102

14 Models for Chemical Reactions in Solution 107
 14.1 Transition State Theory, 111
 14.2 Diffusion Influenced Reactions, 116
 14.3 The Diffusion Model and Chemical Activation, 118

15 Kramers' Theory 124
 15.1 The Klein-Kramers' Equation, 126
 15.2 Chemical Activation, 129
16 The Classical Model of Electron Transfer Reactions in Solution 136

16.1 Introduction, 136
16.2 The Electrostatic Model, 138
16.3 Chemical Activation, 140

Appendix A: Units 147
Appendix B: Integrals and Functions 149
Appendix C: Laplace Transform 151
Appendix D: Statistical Mechanics 154
Appendix E: Notes on the Solvent Model 158
Appendix F: Electrostatic Energy of a Polarized Dielectric 161
Appendix G: Answers to Exercises 164

Index 181