Contents

Preface to the Second Edition xi
Preface to the First Edition xv

Chapter 1 Microstrip Lines I:
Quasi-Static Analyses, Dispersion Models, and Measurements 1

1.1 Introduction 1
1.1.1 Planar Transmission Structures 1
1.1.2 Microstrip Field Configuration 2
1.1.3 Methods of Microstrip Analysis 5

1.2 Quasi-Static Analyses of a Microstrip 6
1.2.1 Modified Conformal Transformation Method 6
1.2.2 Finite Difference Method 12
1.2.3 Integral Equation Method 14
1.2.4 Variational Method in the Fourier Transform Domain 15
1.2.5 Segmentation and Boundary Element Method (SBEM) 18

1.3 Microstrip Dispersion Models 23
1.3.1 Coupled TEM Mode and TM Mode Model 24
1.3.2 An Empirical Relation 24
1.3.3 Dielectric-Loaded Ridged Waveguide Model 25
1.3.4 Empirical Formulae for Broad Frequency Range 27
1.3.5 Planar Waveguide Model 29
1.3.6 Some Comments 32

1.4 Microstrip Transitions 33
1.4.1 Coaxial-to-Microstrip Transition 34
1.4.2 Waveguide-to-Microstrip Transition 37
## Chapter 1 Microstrip Lines and Slotlines

### 1.5 Microstrip Measurements
- 1.5.1 Substrate Dielectric Constant
- 1.5.2 Characteristic Impedance
- 1.5.3 Phase Velocity or Effective Dielectric Constant
- 1.5.4 Attenuation Constant

References

### Chapter 2 Microstrip Lines II:
Fullwave Analyses, Design Considerations, and Applications
- 2.1 Methods of Fullwave Analysis
- 2.2 Analysis of an Open Microstrip
  - 2.2.1 Integral Equation Method in the Space Domain
  - 2.2.2 Galerkin’s Method in the Spectral Domain
  - 2.2.3 Discussion of Results
- 2.3 Analysis of an Enclosed Microstrip
  - 2.3.1 Integral Equation Methods
  - 2.3.2 Finite Difference Method
  - 2.3.3 Discussion of Results
- 2.4 Design Considerations
  - 2.4.1 Microstrip Losses
  - 2.4.2 Power Handling Capability
  - 2.4.3 Effect of Tolerances
  - 2.4.4 Effect of Dielectric Anisotropy
  - 2.4.5 Design Equations
  - 2.4.6 Frequency Range of Operation
- 2.5 Other Types of Microstrip Lines
  - 2.5.1 Suspended and Inverted Microstrip Lines
  - 2.5.2 Multilayered Dielectric Microstrip
  - 2.5.3 Thin Film Microstrip (TFM)
  - 2.5.4 Valley Microstrip Lines
- 2.6 Microstrip Applications
  - 2.6.1 Lumped Elements
  - 2.6.2 Passive Components
  - 2.6.3 Active Components
  - 2.6.4 Packages and Assemblies
  - 2.6.5 Superconducting Microstrip Circuits

References

### Chapter 3 Microstrip Discontinuities I:
Quasi-Static Analysis and Characterization
- 3.1 Introduction
- 3.2 Discontinuity Capacitance Evaluation
  - 3.2.1 Matrix Inversion Method
  - 3.2.2 Variational Method

References
3.2.3 Galerkin's Method in the Fourier Transform Domain 171
3.2.4 Use of Line Sources With Charge Reversal 173
3.3 Discontinuity Inductance Evaluation 175
3.4 Characterization of Various Discontinuities 179
3.4.1 Open Ends 180
3.4.2 Gaps in a Microstrip 183
3.4.3 Steps in Width 189
3.4.4 Bends 194
3.4.5 T-Junctions 196
3.4.6 Cross Junctions 200
3.4.7 Notch 204
3.5 Compensated Microstrip Discontinuities 204
3.5.1 Step in Width 205
3.5.2 Bends 205
3.5.3 T-Junction 208

References 210

Chapter 4 Microstrip Discontinuities II:
Fullwave Analysis and Measurements 213
4.1 Planar Waveguide Analysis 213
4.1.1 Discontinuity Characterization 213
4.1.2 Compensation of Discontinuity Reactances 234
4.1.3 Radiation and Parasitic Coupling 234
4.2 Fullwave Analysis of Discontinuities 245
4.2.1 Galerkin's Method in the Spectral Domain 246
4.2.2 Integral Equation Solution in the Space Domain 249
4.2.3 Time Domain Methods for Microstrip Discontinuity Characterization 250
4.3 Discontinuity Measurements 255
4.3.1 Linear Resonator Method 256
4.3.2 Ring Resonator Method 260
4.3.3 Scattering Parameters Measurement Method 263

References 266

Chapter 5 Slotlines 269
5.1 Introduction 269
5.2 Slotline Analysis 271
5.2.1 Approximate Analysis 271
5.2.2 Transverse Resonance Method 274
5.2.3 Galerkin's Method in the Spectral Domain 277
5.3 Design Considerations 282
5.3.1 Closed-Form Expressions 282
5.3.2 Effect of Metal Thickness 286
5.3.3 Effect of Tolerances 287
5.3.4 Losses in Slotline 287
5.4 Slotline Discontinuities 292
5.4.1 Short End 292
5.4.2 Open End 294
5.5 Other Slotline Configurations 295
5.5.1 Coupled Microstrip-Slotline 295
5.5.2 Conductor-Backed Slotline 297
5.5.3 Conductor-Backed Slotline with a Superstrate 300
5.6 Slotline Transitions 302
5.6.1 Coaxial-to-Slotline Transition 302
5.6.2 Microstrip-to-Slotline Cross-Junction Transition 305
5.7 Slotline Applications 313
5.7.1 Circuits Using T-Junctions 313
5.7.2 Circuits Using Wideband 180° Phase Shift 324
5.7.3 Hybrid/de Ronde’s Branchline Couplers 327
5.7.4 Other Types of Slotline Circuits 334
References 334

Appendix 5.A: Susceptance Calculation for the Transverse Resonance Method 337
Appendix 5.B: Sensitivity Expressions for Slotline Impedance and Wavelength 338

Chapter 6 Finlines 341
6.1 Introduction 341
6.2 Analysis of Finlines 344
6.2.1 Transverse Resonance Method 344
6.2.2 Galerkin’s Method in the Spectral Domain 346
6.3 Design Considerations 349
6.3.1 Closed-Form Solutions 349
6.3.2 LSE-Mode Dispersion Model 356
6.3.3 Synthesis Equations 358
6.3.4 Conductor Loss in Finlines 360
6.4 Transitions 360
6.4.1 Finline-to-Waveguide Taper Transitions 360
6.4.2 Finline-to-Microstrip Taper Transitions 364
References 369
Appendix 6.A: Susceptance Expression for the Unilateral Finline 371

Chapter 7 Coplanar Lines: Coplanar Waveguide and Coplanar Strips 375
7.1 Introduction 375
7.2 Analysis 379
7.2.1 Quasi-Static CPW Analysis Based on the Conformal Mapping Method 379
7.2.2 Quasi-Static Analysis of Coplanar Strips (CPS) 400
7.2.3 Fullwave Analysis 405
7.3 Design Considerations 411
7.3.1 Design Equations 411
7.3.2 Dispersion 412
7.3.3 Effect of Metallization Thickness 414
7.4 Losses 415
7.4.1 Dielectric Loss 415
7.4.2 Conductor Loss 417
7.4.3 Radiation and Surface Wave Losses 422
7.5 Effect of Tolerances 426
7.6 Comparison With Microstrip Line and Slotline 430
7.7 Transitions 432
7.7.1 Coax-to-CPW Transitions 433
7.7.2 Microstrip-to-CPW Transitions 434
7.7.3 Slotline-to-CPW Transitions 436
7.7.4 CPW-to-CPS Transition 439
7.7.5 CPS-to-Slotline Transitions 440
7.8 Discontinuities in Coplanar Waveguide 441
7.9 Coplanar Line Circuits 443
7.9.1 Circuits With Series and Shunt Reactances in CPW 443
7.9.2 Circuits Using Slotline-CPW Junctions 446

Chapter 8 Coupled Microstrip Lines 457
8.1 Introduction 457
8.2 General Analysis of Coupled Lines 458
8.2.1 Methods of Analysis 458
8.2.2 Coupled Mode Approach 460
8.2.3 Even- and Odd-Mode Approach 464
8.3 Characteristics of Coupled Microstrip Lines 467
8.3.1 Quasi-Static Analysis 467
8.3.2 Fullwave Analysis 475
8.3.3 Dispersion Models 483
8.4 Measurements on Coupled Microstrip Lines 487
8.4.1 Impedance Measurements 487
8.4.2 Phase Constant Measurements 488
8.5 Design Considerations for Coupled Microstrip Lines 490
8.5.1 Design Equations 490
8.5.2 Losses 498
8.5.3 Effect of Fabrication Tolerances 502
### Microstrip Lines and Slotlines

8.5.4  Coupled Microstrip Lines With Dielectric Overlays  
8.5.5  Effect of Dielectric Anisotropy  
8.6  Coupled Multiconductor Microstrip Lines  
8.7  Discontinuities in Coupled Microstrip Lines  
  8.7.1 Network Model  
  8.7.2 Open-End Discontinuity  

References

About the Authors

Index