Photothermal Spectroscopy
Methods for Chemical Analysis

STEPHEN E. BIALKOWSKI
Utah State University
Department of Chemistry and Biochemistry
Logan, Utah

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS, INC.
New York / Chichester / Brisbane / Toronto / Singapore
CONTENTS

PREFACE

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xvii</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxiii</td>
</tr>
</tbody>
</table>

CUMULATIVE LISTING OF VOLUMES IN SERIES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1. Photothermal Spectroscopy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1.2. Basic Processes in Photothermal Spectroscopy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

1.3. Photothermal Spectroscopy Methods

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

1.4. Application of Photothermal Spectroscopy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

1.5. Illustrative History of Photothermal Spectroscopy

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.1. Nature of the Photothermal Effect</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2. Photoacoustic Spectroscopy</td>
<td>16</td>
</tr>
<tr>
<td>1.5.3. Photothermal Lens Spectroscopy</td>
<td>19</td>
</tr>
<tr>
<td>1.5.4. Photothermal Interferometry</td>
<td>25</td>
</tr>
<tr>
<td>1.5.5. Two-Laser photothermal Lens Spectroscopy</td>
<td>29</td>
</tr>
<tr>
<td>1.5.6. Photothermal Deflection, Refraction, and Diffraction</td>
<td>32</td>
</tr>
<tr>
<td>1.5.7. Photothermal Radiometry</td>
<td>39</td>
</tr>
<tr>
<td>1.5.8. Historic Summary</td>
<td>41</td>
</tr>
</tbody>
</table>

1.6. Some Important Features of Photothermal Spectroscopy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
</tr>
</tbody>
</table>

CHAPTER 2 ABSORPTION, ENERGY TRANSFER, AND EXCITED-STATE RELAXATION

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Factors Affecting Optical Adsorption</td>
<td>49</td>
</tr>
<tr>
<td>2.2. Optical Excitation</td>
<td>57</td>
</tr>
</tbody>
</table>

vii
Contents

3.5.5. Summary of Hydrodynamic Mode Solutions 146

3.6. Density Response to Impulse Excitation 147
 3.6.1. One-Dimensional Case 148
 3.6.2. Two-Dimensional Cylindrically Symmetric Example 152
 3.6.3. Coupled Solutions 161

3.7. Solutions Including Mass Diffusion 162

3.8. Effect of Hydrodynamic Relaxation on Temperature 169

3.9. Thermodynamic Fluctuation 170

3.10. Noise-Equivalent Density Fluctuation 173

3.11. Summary 178

Appendix 3A: Thermodynamic Parameter Calculation 179

Appendix 3B: Propagating Mode Impulse Response for Polar Coordinates in Infinite Media 180

References 183

Chapter 4: Optical Principles for Photothermal Spectroscopy 185

4.1. Light Propagation 186
 4.1.1. Maxwell’s Equations 186
 4.1.2. Plane Waves in Vacuum 187
 4.1.3. Polarization 189
 4.1.4. Plane Wave Propagation in Dielectric Media 190
 4.1.5. Refractive Index 191
 4.1.6. Relating Macroscopic Dielectric Constant to Molecular Parameters 192
 4.1.7. Refractive Index at Optical Frequencies 194
 4.1.8. Polarizability 196
 4.1.9. Quantum Mechanical Polarizability 199

4.2. Fundamental Modes in Homogeneous Media 201
 4.2.1. TEM$_{00}$ Mode 202
4.2.2. Irradiance of Gaussian Beams 205
4.2.3. Higher-Order Gaussian Modes 205

4.3. Spatial Transformation of Rays by Optical Elements
4.3.1. Paraxial Ray Tracing 209
4.3.2. Ray Propagation in Isotropic Media 211
4.3.3. Ray Propagation Through a Lens and Lenslike Media 212

4.4. Transformation of Gaussian Modes 216
4.4.1. Gaussian Mode Propagation in Isotropic Media 218
4.4.2. Focusing Gaussian Beams 220

4.5. Paraxial Diffraction Theory 223
4.5.1. Fresnel Diffraction 223
4.5.2. Fraunhofer Diffraction 227
4.5.3. Diffraction Elements 227
4.5.4. Fourier Transform Properties of Apertures 228
4.5.5. One- and Two-Dimensional Fourier Transforms 230
4.5.6. Diffraction Properties of the Ideal Thin Lens 232
4.5.7. Fourier Transform Properties of the Lens 234
4.5.8. Imaging with Lenses 235
4.5.9. Diffraction Transforms with Coherent and Incoherent Light 238
4.5.10. Finite-Diameter Lens Aperture Effects 240
4.5.11. Lens Pupil and Optical Transfer Functions 243

4.6. Diffraction of Gaussian Beams 246
4.6.1. Free-Space Propagation of Gaussian Beams 246
4.6.2. Focusing Gaussian Beams 248
4.6.3. Lens Transform Properties with Gaussian Beams 250
4.6.4. Gaussian Beam Attenuation 250
CONTENTS

4.6.5. Effects of Spatial Noise 252
4.7. Diffraction Gratings 255
 4.7.1. Thin-Amplitude-Transmission Gratings 257
 4.7.2. Thin-Phase-Transmission Gratings 260
 4.7.3. Thick Gratings 261

References 265

CHAPTER 5 TEMPERATURE CHANGE AND OPTICAL ELEMENTS IN HOMOGENEOUS SAMPLES 267

5.1. Temperature Change from Gaussian Excitation Sources 268
 5.1.1. Thermal Diffusion Approximation 268
 5.1.2. Gaussian Laser Excitation of Optically Thin Samples 270
 5.1.3. Short-Pulse Laser Excitation 272
 5.1.4. Continuous Laser Excitation 274
 5.1.4.1. Laser Heating 274
 5.1.4.2. On-Axis Temperature Change 275
 5.1.4.3. Postexcitation Cooling 276
 5.1.5. Chopped Laser Excitation 280
 5.1.6. On-Axis Temperature Change for Periodic Excitation 283
 5.1.7. Thermal Gratings 285

5.2. Thermodynamic Parameters 289
 5.2.1. Thermodynamic Parameters Affecting Temperature 289
 5.2.2. Convection Heat Transfer 295

5.3. Optical Elements 296
 5.3.1. Phase Shift and Optical Pathlength Difference 297
 5.3.2. Deflection Angle 299
 5.3.3. Thermal Lens Focal Length 300
 5.3.4. Grating Strength 303

5.4. Temperature-Dependent Refractive Index Change 305
 5.4.1. Density and Temperature Dependence of Refractive Index 306
5.4.2. Population Dependence on Refractive Index 312
5.4.3. Soret Effect 314
5.4.4. Other Factors Affecting Refractive Index 316
5.5. Limitations 317
5.5.1. Excitation Beam Waist Radius Changes 317
5.5.2. Effects of Scattering and Optically Thick Samples 318
5.5.3. Finite-Extent Sample Effects 321
5.5.4. Accounting for Finite Cell Radius 323
References 328

CHAPTER 6 PHOTOTHERMAL SPECTROSCOPY IN HOMOGENEOUS SAMPLES 331
6.1. Photothermal Interferometry 331
6.2. Photothermal Deflection 338
6.2.1. Deflection Angle for Pulsed Laser Excitation 338
6.2.1.1. Collinear Probe Geometry 338
6.2.1.2. Crossed-Beam Probe Geometry 341
6.2.2. Deflection Angle for Continuous and Chopped Laser Excitation 342
6.2.2.1. Continuous Excitation with Parallel-Probe Geometry 342
6.2.2.2. Continuous Excitation with Crossed-Probe Geometry 344
6.2.2.3. Chopped Excitation with Parallel Probe 346
6.2.3. Deflection Angle Detection 349
6.2.3.1. Probe Laser Beam Waist Effect 350
6.2.3.2. Straightedge Apparatus 351
6.2.3.3. Position-Sensing Detectors 352
6.2.3.4. Other Methods to Detect Deflection Angle 354
6.2.3.5. Differential Deflection Angle 357
6.3. Thermal Lens Focal Length 359
6.3.1. Pulsed Excitation Thermal Lens Focal Length 359
CHAPTER 7 ANALYTICAL MEASUREMENT AND DATA PROCESSING CONSIDERATIONS

7.1. Sensitivity of Photothermal Spectroscopy
 7.1.1. Thermal Lens-Enhancement Factors
 7.1.2. Relative Sensitivity of the Photothermal Lens and Deflection Spectroscopies
 7.1.3. Relating Photothermal Signals to Absorbance and Enhancement
 7.1.4. Intrinsic Enhancement of Two-Laser Methods
 7.1.5. Enhancement Limitations
7.2. Considerations for Trace Analysis
7.3. Optical Instrumentation for Analysis
 7.3.1. Differential Measurement
 7.3.2. Spectroscopic Measurement
 7.3.3. Fiber Optics
7.4. Processing Photothermal Signals
 7.4.1. Analog Signal Processing
 7.4.2. Digital Signal Processing
7.5. Photothermal Data Processing
 7.5.1. Calibration
 7.5.2. Excitation Irradiance Curves
 7.5.3. Limits of Detection and Quantitation
7.6. Tracking Down and Reducing Noise

References

CHAPTER 8 ANALYTICAL APPLICATIONS

8.1. Areas of Analytical Application
8.2. Photothermal Spectroscopy Analysis of Stationary Homogeneous Samples
 8.2.1. Measurement Techniques
 8.2.2. Applications
 8.2.2.1. Gas Phase
 8.2.2.2. Liquid Phase
8.2.3. Novel Cross-Beam Apparatus for Photothermal Lens Spectroscopy

References
CONTENTS

8.3. Photothermal Spectroscopy Detection in Chromatography 488
 8.3.1. Temperature Change in Flowing Samples 489
 8.3.2. Deflection Angles and Inverse Focal Lengths in Flowing Samples 492
 8.3.2.1. Isotropic and Turbulent Flow 492
 8.3.2.2. Laminar Flow 494
 8.3.3. Applications 499
 8.3.3.1. Gas Chromatography and Flowing Gas Analysis 499
 8.3.3.2. Liquid Phase 506
8.4. Excitation and Relaxation Kinetics 508
 8.4.1. Relaxation Kinetics and Quantum Yield Studies 509
 8.4.2. Photodynamic Irradiance-Dependent Signal Studies 521
 8.4.3. Optical Bleaching in Organic Dye Molecules 522
 8.4.4. Optical Bleaching Effects in Pulsed Laser Photothermal Spectroscopy 529

References 531

CHAPTER 9 PHOTOTHERMAL SPECTROSCOPY OF HETEROGENEOUS SAMPLES 535

9.1. Types of Heterogeneity 536
9.2. Apparatus for Photothermal Deflection 537
9.3. Surface Absorption 538
 9.3.1. Thermal Diffusion at Surfaces 538
 9.3.2. Temperature Change from Pulsed Excitation 539
 9.3.3. Temperature Change from Continuous Excitation 541
 9.3.4. Temperature Change from Periodic Excitation 542
9.4. Thermal Diffusion in Volume-Absorbing Samples 544
 9.4.1. Volume Temperature Change for Pulsed Excitation 544
CONTENTS

9.4.2. Periodic Excitation of Volume Absorbers 545
9.5. Temperature Change in Layered Samples 546
 9.5.1. Periodic Excitation of Layered Samples 549
 9.5.2. Pulsed Excitation of Thick-Layered Samples 552
9.6. Surface Point Source 554
9.7. Gaussian Beam Excitation of Surfaces 559
9.8. Excitation of Layered Samples with Gaussian Beams 561
9.9. Deflection Angles with Oscillating Gaussian Excitation 565
9.10. Photothermal Reflection 568
9.11. Experiment Design for Photothermal Deflection 568
9.12. Applications to Chemical Analysis 572
 9.12.1. Bulk Properties 572
 9.12.2. Applications to Gel and Thin-Layer Chromatography 573
 9.12.3. Other Applications to Chemical and Biological Sample Analysis 575
References 577

INDEX 581