The MOCVD Challenge

Volume 2:
A survey of GaInAsP–GaAs for photonic and electronic device applications

Manijeh RAZEGHI

McCormick School of Engineering
Center for Quantum Devices/EECS Department
Northwestern University
Evanston, Illinois 60208

Institute of Physics Publishing
Bristol and Philadelphia
Contents

Preface xi
Foreword xiii
Introduction xv

1 Introduction to Semiconductor Compounds 1
 1.1 III–V semiconductor alloys 1
 1.2 III–V semiconductor devices 4
 1.3 Technology of multilayer growth 8
 References 19

2 MOCVD Growth Technique 22
 2.1 MOCVD growth systems 22
 2.2 The MOCVD growth mechanism and growth process 29
 2.3 Gas flow patterns and reactor design 34
 2.4 MOCVD starting materials 42
 2.5 Low-pressure MOCVD and MOMBE 47
 References 49

3 In situ Characterization during MOCVD 54
 3.1 Introduction 54
 3.2 Reflectance anisotropy and ellipsometry 57
 3.3 Optimization of the growth of III–V binaries by RDS 64
 3.4 RDS investigation of III–V lattice-matched heterojunctions 71
 3.5 RDS investigation of III–V lattice-mismatched structures 88
 3.6 Insights on the growth process 108
 References 111

4 Ex situ Characterization Techniques 114
 4.1 Chemical bevel revelation 114
 4.2 Deep-level transient spectroscopy 118
 4.3 X-ray diffraction 129
4.4 Photoluminescence 143
4.5 Electrochemical capacitance–voltage and photovoltage spectroscopy 149
4.6 Resistivity and Hall measurement 155
4.7 Thickness measurement 166
References 168

5 MOCVD Growth of GaAs Layers 170
5.1 Introduction 170
5.2 GaAs and related compounds band structure 170
5.3 MOCVD growth mechanism of GaAs and related compounds 179
5.4 Experimental details 182
5.5 Incorporation of impurities in GaAs grown by MOCVD 188
References 197

6 Growth and Characterization of the GaInP–GaAs System 199
6.1 Introduction 199
6.2 Growth details 200
6.3 Structural order in Ga_xIn_{1-x}P alloys grown by MOCVD 202
6.4 Defects in GaInP layers grown by MOCVD 204
6.5 Doping behaviour of GaInP 207
6.6 GaAs–GaInP heterostructures 214
6.7 Growth and characterization of GaInP–GaAs multilayers by MOCVD 248
6.8 Optical and structural investigations of GaAs–GaInP quantum wells and superlattices grown by MOCVD 252
6.9 Characterization of GaAs–GaInP quantum wells by Auger analysis on chemical bevels 260
6.10 Evaluation of the band offsets of GaAs/GaInP multilayers by electroreflectance (Razeghi et al 1992) 264
6.11 Intersubband hole absorption in GaAs–GaInP quantum wells References 279

7 Optical Devices 283
7.1 Electro-optical Modulators 283
7.2 GaAs-based infrared photodetectors grown by MOCVD 293
7.3 Solar cells and GaAs solar cells 308
References 313

8 GaAs-based Lasers 317
8.1 Introduction 317
8.2 Basic physical concepts 318
8.3 Laser structures 326
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4 New GaAs-based materials for lasers</td>
<td>336</td>
</tr>
<tr>
<td>References</td>
<td>365</td>
</tr>
<tr>
<td>9 GaAs-based heterojunction electron devices grown by MOCVD</td>
<td>369</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>369</td>
</tr>
<tr>
<td>9.2 Heterostructure field-effect transistors (HFETs)</td>
<td>371</td>
</tr>
<tr>
<td>9.3 Heterojunction bipolar transistors (HBTs)</td>
<td>391</td>
</tr>
<tr>
<td>References</td>
<td>400</td>
</tr>
<tr>
<td>10 Optoelectronic Integrated Circuits (OEICs)</td>
<td>403</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>403</td>
</tr>
<tr>
<td>10.2 Material considerations</td>
<td>404</td>
</tr>
<tr>
<td>10.3 OEICs on Si substrate</td>
<td>405</td>
</tr>
<tr>
<td>10.4 The role of optoelectronic integration in computing</td>
<td>409</td>
</tr>
<tr>
<td>10.5 Examples of optoelectronic integration by MOCVD</td>
<td>414</td>
</tr>
<tr>
<td>References</td>
<td>417</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>A Effect of Substrate Miscut on the Measured Superlattice Period</td>
<td>419</td>
</tr>
<tr>
<td>B Optimization of Thickness and In Composition of InGaAs Well for 980 nm Lasers</td>
<td>422</td>
</tr>
<tr>
<td>References</td>
<td>425</td>
</tr>
<tr>
<td>C Energy Levels and Laser Gains in a Quantum Well (GaInAsP): the ‘Effective Mass Approximation’</td>
<td>426</td>
</tr>
<tr>
<td>D Luttinger–Kohn Hamiltonian</td>
<td>429</td>
</tr>
<tr>
<td>D.1 k · p theory</td>
<td>429</td>
</tr>
<tr>
<td>D.2 Luttinger–Kohn Hamiltonian</td>
<td>429</td>
</tr>
<tr>
<td>References</td>
<td>430</td>
</tr>
<tr>
<td>E Infrared Detectors</td>
<td>431</td>
</tr>
<tr>
<td>E.1 Classification</td>
<td>431</td>
</tr>
<tr>
<td>E.2 General theory of photodetectors</td>
<td>431</td>
</tr>
<tr>
<td>References</td>
<td>435</td>
</tr>
<tr>
<td>Index</td>
<td>437</td>
</tr>
</tbody>
</table>