SEMICONDUCTORS

BY

R. A. SMITH
M.A., PH.D.
Head of the Physics Department
Royal Radar Establishment
Malvern

CAMBRIDGE
AT THE UNIVERSITY PRESS
1959
CONTENTS

Chapter 1. The Elementary Properties of Semiconductors

1.1 Early work on semiconductors 1
 1.1.1 'Excess' and 'defect' semiconductors 4
 1.1.2 The alkali halides 5
 1.1.3 Surface and bulk effects 5
1.2 Applications of semiconductors 6
1.3 Elementary theory of semiconductors 9
 1.3.1 Conduction processes 17
1.4 Control of carrier density 19

Chapter 2. Energy Levels in Crystalline Solids

2.1 Wave mechanics of free electrons 22
2.2 Motion in a periodic potential 27
2.3 Form of the energy bands 30
2.4 Positive holes 37
2.5 Motion of electrons and holes in a crystal under the influence of an external field of force 38
2.6 Energy-level diagrams 41
2.7 Resistance to motion of electrons and holes in a crystal 44

Chapter 3. Impurities and Imperfections in Crystals

3.1 Types of imperfection 45
 3.1.1 Impurities 45
 3.1.2Interstitial atoms and vacancies 45
 3.1.3 Dislocations 47
 3.1.4 Polygonization and dislocation walls 49
CONTENTS

3.2 Chemical binding in semiconductors
- 3.2.1 Ionic bonds
- 3.2.2 Homopolar bonds
- 3.2.3 Mixed bonds

3.3 Substitutional impurities in group IV semiconductors
- 3.3.1 Energy levels of group III or group V impurities in group IV semiconductors
- 3.3.2 Energy levels of other impurities in group IV semiconductors
- 3.3.3 Impurities in polar semiconductors
- 3.3.4 Impurities in the groups III–V semiconductors

3.4 Excitons

Chapter 4. Carrier Concentrations in Thermal Equilibrium
- 4.1 Distribution of electrons between the various energy levels
- 4.2 Intrinsic semiconductors
- 4.3 Semiconductors with impurity levels

Chapter 5. Electron Transport Phenomena
- 5.1 Collisions with crystalline imperfections—relaxation time, τ
- 5.2 Constant relaxation time τ
 - 5.2.1 Electrical conductivity
 - 5.2.2 The Hall effect
 - 5.2.3 Transverse magneto-resistance
- 5.3 Relaxation time a function of E or v
 - 5.3.1 Boltzmann's equation
 - 5.3.2 Electrical conduction
 - 5.3.3 Variation of τ with energy E
 - 5.3.4 Hall effect for semiconductor with spherical constant-energy surfaces
 - 5.3.5 Hall effect for semiconductor with multiple energy maxima or minima
5.3.6 Magneto-resistance of semiconductor with spherical constant-energy surfaces 123
5.3.7 Magneto-resistance of semiconductor with constant-energy surfaces in the form of ellipsoids 127

5.4 Scattering mechanisms 135
5.4.1 Scattering by lattice vibrations 136
5.4.2 Phonons 141
5.4.3 Relaxation time for lattice scattering 145
5.4.4 Impurity scattering 148
5.4.5 Scattering by dislocations 153
5.4.6 Other types of scattering 154

5.5 High-field effects 156

<table>
<thead>
<tr>
<th>Chapter 6. Thermal Effects in Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Thermal conductivity</td>
</tr>
<tr>
<td>6.2 Thermo-electric power</td>
</tr>
<tr>
<td>6.3 Thermomagnetic effects</td>
</tr>
<tr>
<td>6.3.1 The Ettingshausen effect</td>
</tr>
<tr>
<td>6.3.2 The Nernst effect</td>
</tr>
<tr>
<td>6.3.3 The Righi–Leduc effect</td>
</tr>
<tr>
<td>6.4 Condition of degeneracy</td>
</tr>
<tr>
<td>6.5 Strong magnetic fields</td>
</tr>
<tr>
<td>6.6 Relative magnitudes of the magnetic effects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7. Optical and High-frequency Effects in Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Optical constants of semiconductors</td>
</tr>
<tr>
<td>7.2 The fundamental absorption</td>
</tr>
<tr>
<td>7.2.1 Direct transitions, $k_{\text{min.}} = k_{\text{max.}}$</td>
</tr>
<tr>
<td>7.2.2 Direct transitions, $k_{\text{min.}} \neq k_{\text{max.}}$</td>
</tr>
<tr>
<td>7.2.3 Indirect transitions, $k_{\text{min.}} \neq k_{\text{max.}}$</td>
</tr>
<tr>
<td>7.2.4 Indirect transitions, $k_{\text{min.}} = k_{\text{max}}$</td>
</tr>
</tbody>
</table>
7.3 Exciton absorption 211
7.4 Photo-conductivity 214
7.5 The photo-magnetic effect 216
7.6 Free-carrier absorption 216
7.7 Plasma resonance 222
7.8 High-frequency effects in a magnetic field 222
7.8.1 Cyclotron resonance 223
7.9 Magnetic quantization 226
7.9.1 The magnetic band shift 227
7.9.2 The oscillatory magneto-absorption effect 228
7.10 Impurity absorption 229
7.10.1 Spin resonance due to impurities 231
7.11 Lattice absorption 232
7.12 Infra-red emission from semiconductors 233

Chapter 8. Diffusion of Electrons and Positive Holes
8.1 Inhomogeneous semiconductors 234
8.2 Einstein’s relationship 235
8.3 Departures from thermal equilibrium 237
8.4 Electron-hole recombination 239
8.5 Diffusion and conduction in extrinsic material ($n \gg p$ or $p \gg n$) 240
8.5.1 The equation of continuity 240
8.5.2 Small electric field 241
8.5.3 Carrier injection (\mathcal{E} small) 244
8.5.4 Carrier extraction (\mathcal{E} small) 245
8.5.5 Large electric field ($\mathcal{E} > 0$) 245
8.5.6 General solution ($p \ll n$) 247
8.6 Drift of a pulse of minority carriers in an electric field 250
8.7 Near-intrinsic material
 8.7.1 Small field condition
 8.7.2 Carrier exclusion
 8.7.3 Carrier accumulation
8.8 Comparison of contact phenomena
8.9 The p-n junction
 8.9.1 Barrier-layer capacity
 8.9.2 Current-voltage characteristic
 8.9.3 High-frequency behaviour of a p-n junction
8.10 The n^+-n and p^+-p junctions
8.11 Surface properties of semiconductors
 8.11.1 The field effect
8.12 Metal-semiconductor contacts
8.13 Recombination mechanisms
 8.13.1 Radiative recombination
 8.13.2 Recombination through traps
 8.13.3 Recombination at dislocations
 8.13.4 Recombination with donors or acceptors at low temperatures
 8.13.5 Surface recombination
8.14 Mean lifetime in filaments and thin strips
8.15 Photo-conductivity
 8.15.1 Uniform absorption rate
 8.15.2 Effect of trapping
 8.15.3 Effect of surface recombination
 8.15.4 Non-uniform absorption rate
8.16 The transverse photo-voltage
8.17 The photo-magnetic effect

Chapter 9. Methods of Determining the Characteristic Properties of Semiconductors
9.1 Band structure
9.2 The minimum energy gap, ΔE
Chapter 10. The Element Semiconductors

10.1 Germanium and silicon
 10.1.1 General physical properties
 10.1.2 Crystal structure
 10.1.3 Energy-band structure
 10.1.4 Electron and hole mobility
 10.1.5 Value of n_i and σ_i
 10.1.6 Hall coefficient
 10.1.7 Magneto-resistance
 10.1.8 Impurity energy levels
 10.1.9 Optical properties
 10.1.10 Pressure effects
 10.1.11 Thermo-electric power
 10.1.12 Molten Ge
 10.1.13 Other properties of Si and Ge
 10.1.14 Crystal growth and purification
 10.1.15 Ge–Si alloys

10.2 Diamond and gray tin
 10.2.1 Type IIb diamond
CONTENTS

10.2.2 Electron and hole mobility in high-resistivity diamond
10.2.3 Properties of gray tin

10.3 Selenium

10.4 Tellurium
 10.4.1 Hall effect in Te
 10.4.2 Electrical conductivity of Te
 10.4.3 Forbidden energy gap, \(\Delta E \)
 10.4.4 Optical properties of Te
 10.4.5 Electron and hole mobility, and value of \(n_i \)
 10.4.6 Thermal effects in Te
 10.4.7 Minority carrier lifetime in Te
 10.4.8 Liquid Te
 10.4.9 Te–Se alloys

10.5 Boron

10.6 Other possible element semiconductors

Chapter 11. Compound Semiconductors

11.1 Groups III–V intermetallic compounds

11.2 InSb
 11.2.1 Hall coefficient and conductivity of InSb
 11.2.2 Electron and hole mobility
 11.2.3 Value of \(n_i \) for InSb
 11.2.4 Optical properties
 11.2.5 Effective masses
 11.2.6 Forbidden energy gap, \(\Delta E \)
 11.2.7 Minority carrier lifetime
 11.2.8 Impurity levels
 11.2.9 Crystal growth and purification
 11.2.10 Other properties of InSb
11.3 Other groups III–V compound semiconductors

11.3.1 InAs, InP
11.3.2 GaSb, GaAs, GaP
11.3.3 AlSb
11.3.4 Alloys of groups III–V semiconductors
11.3.5 Summary of properties of groups III–V semiconductors

11.4 Other intermetallic compound semiconductors

11.4.1 Groups I–V compound semiconductors
11.4.2 Groups II–IV compound semiconductors
11.4.3 Groups II–V compound semiconductors

11.5 Polar compound semiconductors

11.6 PbS, PbSe, PbTe

11.6.1 Methods of crystal growth
11.6.2 Hall coefficient and conductivity
11.6.3 Electron and hole mobilities
11.6.4 Optical properties
11.6.5 Band structure
11.6.6 Minority carrier lifetime
11.6.7 Value of \(n_i \)
11.6.8 Impurities and deviations from stoichiometric composition
11.6.9 Other properties of PbS, PbSe, PbTe

11.7 CdS, CdSe, CdTe

11.8 Other semiconducting compounds of S, Se, Te

11.8.1 Bi₂Te₃
11.8.2 Ternary and quaternary compounds

11.9 Oxide semiconductors

11.9.1 Cu₂O
11.9.2 ZnO, TiO₂
11.9.3 Fe₃O₄, NiO

11.10 Silicon carbide
Chapter 12. Some Applications of Semiconductors

12.1 Use of semiconductors in electrical technology

12.2 Rectifiers
 12.2.1 High-frequency and switching diodes
 12.2.2 Zener or avalanche-breakdown diodes
 12.2.3 Avalanche-injection diodes
 12.2.4 Methods of making junction diodes

12.3 Transistors
 12.3.1 The point-contact transistor
 12.3.2 The filamentary transistor
 12.3.3 The junction transistor
 12.3.4 Equivalent circuits of the junction transistor
 12.3.5 Energy-level diagram for the junction transistor structure
 12.3.6 Methods of manufacturing junction transistors
 12.3.7 High-frequency and switching transistors
 12.3.8 Other types of transistor

12.4 The photo-diode

12.5 The photo-electric power generator

12.6 Photo-cells

12.7 Infra-red detectors
 12.7.1 PbS detectors
 12.7.2 PbTe detectors
 12.7.3 PbSe detectors
 12.7.4 InSb detectors
 12.7.5 Doped Ge detectors

12.8 Infra-red and microwave modulators

12.9 Applications of the Hall effect in semiconductors

12.10 Thermopiles and thermo-electric refrigerators

12.11 Thermistors, varistors and other non-linear resistors

Appendix. Some recent review articles on semiconductors

Index