The Natural Selection of the Chemical Elements

The Environment and Life's Chemistry

R. J. P. WILLIAMS
Emeritus Research Professor,
University of Oxford

and

J. J. R. FRAÚSTO da SILVA
Professor of Analytical Chemistry, Instituto Superior Técnico,
Universidade Técnica de Lisboa

CLARENDON PRESS · OXFORD
1996
Contents

List of units of energy and work and the values of some physical constants xxv

Part I · The principles of the natural selection of chemical elements into physical states and chemical combinations

1 The development of man’s ideas concerning nature 3
 1.1 The early views 3
 1.2 The development of modern views 7
 1.3 The periodic table and the electronic structure of atoms 9
 1.4 Fields of force 11
 1.5 Secondary consequences of (orbital) motion restrictions: shapes of atomic combinations 19
 1.6 Fire (energy), temperature and pressure 20
 1.7 Light and radiant energy 21
 1.8 Fields and flow 23
 1.9 Order, disorder and organisation of rest masses 24
 1.10 The evolving universe 26
 1.11 The limitations to understanding 27

2 Order in chemical systems: elements and their combinations 32
 A Elements and stoichiometric combination of elements 32
 2.1 Introduction to chemical binding 33
 2.2 The atomic and physical properties of the elements 33
 2.2.1 Atomic sizes and structures of the elements 35
 2.2.2 Ionisation potential and electron affinity 38
 2.2.3 Empirical covalent and van der Waals radii of atoms 42
 2.2.4 Shapes of molecules formed from single elements 43
 2.2.5 The binding energies of the elements 43
 2.2.6 Summary of the properties of the elements and their natural selection 45
 2.3 The combination of different elements—stoichiometric and non-stoichiometric compounds 46
 2.4 General factors affecting the combination of two different atoms 47
 2.4.1 Electronegativity and size 47
2.4.2 Combining ratios—valence 48
2.4.3 Variable valence in A/B compounds 49
2.4.4 Available orbitals: structures 51

2.5 Stoichiometric combination of two similar non-metal atoms 52
2.5.1 Small covalent molecules: electronegativity and charge distribution 53
2.5.2 Shapes of small covalent molecules A_mB_n 53
2.5.3 Bond energy in covalent compounds 58

2.6 Assemblies of molecules: intermolecular forces 59
2.6.1 Hydrogen bonding 61
2.6.2 The formation of liquids: water 61
2.6.3 The different kinds of liquids 62

2.7 Hydrogen in compounds other than water 62

2.8 Summary of the outstanding features of non-metal compounds 63

2.9 Stoichiometric combination of very different elements: ionic compounds 66
2.9.1 Energetics of ionic compounds 66
2.9.2 Physical properties of ionic solids 68
2.9.3 Variable valence and electronic conductivity in salts 68
2.9.4 Partial covalence in ionic compounds: coordination chemistry 69
2.9.5 Ligand-field effects on structure 70
2.9.6 Ligand-field energies 71

B Non-stoichiometric combination of elements 73
2.10 Introduction 73
2.11 Ternary salts and silicates 73
2.12 Intermediate cases between salts and covalent molecules: covalent solids A_mB_n 75
2.13 Combination of like metal atoms: alloys 76
2.14 Liquids and solutions 77
2.15 Summary of order 77

3 The balance between order and disorder 81
3.1 Introduction 81
3.2 Order–disorder balance 84
3.2.1 Spatial arrangements of the particles of a system 85
3.2.2 Changes in entropy with changes in volume of a gas—configurational entropy 86
3.2.3 Temperature change and disorder—thermal entropy 88
3.2.4 Total entropy change of a system 92
3.2.5 Physical states in balance—latent heats 93
3.3 Systems out of balance 96
3.3.1 Thermodynamics of mixing 98
3.4 Standard states of chemical substances 99
3.4.1 Applications to chemical systems: thermodynamic stability of compounds 102
3.5 Free energy and chemical equilibrium 104
3.5.1 The equilibrium constant at different temperatures or pressures 106
3.5.2 Chemical change and physical change 107
CONTENTS • xv

3.6 Energy transfer: work
 3.6.1 Chemical energy transfer to mechanical energy \((pV)\) 107
 3.6.2 Thermodynamic efficiency of transfer of energy: doing work 109

3.7 Radiative energy and entropy 111

3.8 Energy state distribution in materials: the construction of machines 113

3.9 Summary of order/disorder equilibrium 114

4 Phase equilibria 117
 4.1 Introduction 117
 4.2 Phases and chemicals in equilibrium 118
 4.3 The phase rule 120
 4.3.1 Chemical equilibria and components of chemical systems 121
 4.3.2 The operational definition of component 123
 4.3.3 The number of phases 124
 4.4 Variability of chemical systems: examples of systems of more than one component 125
 4.4.1 Unitary systems 126
 4.4.2 Binary systems 127
 4.4.3 Ternary systems 132
 4.4.4 Systems with more than three components 134
 4.4.5 Liquid crystals 135
 4.4.6 Summary of phase diagrams 135
 4.5 The effects of gravity 137
 4.6 The free-energy conditions and phases at equilibrium 137
 4.6.1 Stability of phases: free-energy changes with composition 139
 4.7 The cooperative character of phase transitions 141
 4.8 Supercooled phases—glasses 143
 4.9 Summary of equilibrium conditions of phases 144

5 Equilibria in dilute solutions in water 148
 5.1 Introduction 148
 5.2 Factors that affect solubility generally 149
 5.3 Relative solubility in two liquid phases: partition coefficients 152
 5.4 Dilute solutions containing more than one solute 153
 5.5 Equilibria between acids and bases in aqueous solutions 154
 5.5.1 Formation of precipitates: solubility products 157
 5.5.2 Complex ion formation 159
 5.5.3 Selectivity of precipitation and complex ion formation 163
 5.6 Competitive equilibria 165
 5.6.1 Proton and hydroxide ion binding 166
 5.6.2 Conditional, apparent or effective stability constants 169
 5.6.3 Organic molecule associations 171
 5.6.4 Organic polymers in solution 171
 5.6.5 Summary of solubility and complex association equilibria 172
 5.6.6 Acid–base equilibria and components in solutions 174
5.7 Equilibria between oxidation states 174
 5.7.1 Oxidation–reduction potentials in water 177
 5.7.2 The H_2/O_2 potentials in water at $\text{pH}=7.0$ 180
 5.7.3 Metal ion oxidation states at $\text{pH}=7.0$ 181
 5.7.4 C,N,O and S oxidation states in aqueous solutions 183
 5.7.5 Oxidation states, components and variance 183
5.8 Combined acid–base and redox equilibria 184
 5.8.1 Redox potentials and complex ion formation 185
 5.8.2 The change from the $\text{H}_2\text{S}/\text{S}^2$ to the $\text{H}_2\text{O}/\text{O}_2$ potential (or vice versa) 186
5.9 Summary: variance in solutions 188

6 Limited phases, fields and compartments 192
 6.1 Introduction 192
 6.2 One-component systems of limited volume 195
 6.2.1 Sizes of phases 195
 6.2.2 Shape of a limited phase alone and in contact with a bulk phase 195
 6.2.3 Surfaces and shapes of limited phases as variables 196
 6.2.4 Fields between limited phases in equilibrium 197
 6.2.5 Assemblies of limited phases 198
 6.2.6 Total variables in phase systems of limited volume 199
 6.2.7 Factors governing phase interactions in fields: chemical selectivity of surface interactions 199
 6.2.8 Matching of shapes of elastic substances at equilibrium 200
 6.3 Further diversification through barriers: compartments 201
 6.3.1 Storage of free energy between compartments: an ability to do work 201
 6.3.2 Pressure and concentration gradients between compartments 202
 6.3.3 Chemical potential gradients between compartments 203
 6.3.4 Storage of mechanical energy (tension) 203
 6.3.5 Energy storage in a gravitational field 204
 6.3.6 The natural selection of chemical elements in compartments 205
 6.4 Energy storage by dilute components in compartments 205
 6.4.1 Osmotic pressure 205
 6.4.2 Electrical potential differences 207
 6.5 Equivalences of free energies 209
 6.6 Radiation energy stored in compartments 210
 6.7 Limited phases and compartments in biological systems 210
 6.8 Very small phases: large molecules treated as phases 211
 6.8.1 'Phase' behaviour of proteins and nucleotides 212
 6.8.2 Ordered sequences in polymers and assemblies 214
 6.8.3 An example of equilibrium self-assembly: viruses 214
 6.9 Summary: the incommensurate increase in variables 215

7 The evolution of kinetic control and of organisation 219
 A Kinetic principles 219
 7.1 Introduction 219
 7.1.1 Change, time and flow 220
 7.2 The initial development in the natural selection of the atomic elements 222
7.3 Factors affecting reaction rates
 7.3.1 Kinetics and natural selection of chemical elements: functional value in living systems

B Chemical kinetic controls
7.4 Chemical barriers to reaction
 7.4.1 Molecularity and energy requirements

7.5 Chemical selection of components for rate control
 7.5.1 Electron transfer
 7.5.2 The nature of water: a very special solvent for transport
 7.5.3 Selected chemical rates of diffusion in water and ion channels: solvent exchange and message transmission
 7.5.4 The extension of the selectivity of chemical steps of diffusion: message reception and triggering
 7.5.5 Diversification of element use through non-exchanging binding

7.6 Slow exchange, structures and the requirements for catalysts: construction and reaction systems
 7.6.1 Kinetics of organic compounds in traps

7.7 Chemical change in organic molecules
 7.7.1 Acid–base reactions: hydrolysis and condensation
 7.7.2 Oxidation/reduction reactions: further reaction systems
 7.7.3 Two-electron changes
 7.7.4 Free-radical reactions

7.8 Inorganic elements in organic and biological chemistry:
 summary of kinetic aspects
 7.8.1 Kinetic selection of the elements for survival
 7.8.2 Allosteric control of reactions: feedback to catalysts
 7.8.3 The effect of temperature
 7.8.4 Control of energy supply: synthesis
 7.8.5 Control over molecularity

7.9 Chemicals and self-assembly of equipment

C Physical barriers
7.10 Physical controls over reaction rates
 7.10.1 Introduction
 7.10.2 Diffusion in one phase in a single compartment
 7.10.3 Restricted diffusion across boundaries between compartments
 7.10.4 Diffusion in media formed by different elements
 7.10.5 The nature of containing vessels: boundaries
 7.10.6 Control of diffusion in inorganic phases
 7.10.7 The flow of water
 7.10.8 The control of diffusion by organic phases

7.11 Functional advantages of an increase in the number of (communicating) compartments

7.12 Fields and flow
 7.12.1 Electronic and electrolytic circuits

7.13 From simple flow to feedback control
 7.13.1 Feedback electronic circuits: an illustration
 7.13.2 Physical fields and feedback: a biological example
 7.13.3 Geological control and feedback: the physical water cycle on Earth
7.14 Physical control of diffusion and variance of systems 270
7.15 Physical feedback control in relation to chemical component feedback 272

D Organisation 274
7.16 Linking metabolic change to creation of structure 274
7.17 Nucleation of assemblies 275
7.18 Shape 277
7.19 Energy, radiation fields and flow in temperature gradients 277
 7.19.1 Energy capture and control 278
 7.19.2 Energy flow and shape 281
7.20 Thermodynamics and organisation 281
7.21 Plans and information 282
7.22 Thermodynamic efficiency and the ability to change state 282
7.23 The trapping of energy and the evolution of organisation: a summary 284

Part II · The observed natural selection of chemical elements in both abiotic and biotic systems during their evolution

8 The evolution of inorganic chemicals on Earth 285
 8.1 Introduction 285
 8.2 The formation of the elements in the universe 290
 8.3 The abundance of elements in the universe 291
 8.4 The initial formation of compounds and condensates 294
 8.4.1 The affinity of the elements for one another at different temperatures 295
 8.5 The formation of Earth 297
 8.5.1 The formation of sulphides 301
 8.5.2 The primitive atmosphere 303
 8.5.3 The nature of the early sea 305
 8.5.4 The early surface of the Earth 306
 8.5.5 Some non-equilibrated inorganic compartments of interest: an aside 308
 8.6 The later evolution of the Earth’s chemicals 309
 8.6.1 The atmosphere today 310
 8.6.2 The nature of the sea today 311
 8.6.3 The nature of freshwater today 313
 8.6.4 The crust of Earth today 314
 8.6.5 Trace element fractionation in the rocks and soils of the crust 315
 8.6.6 The nature of soils and soil water 315
 8.6.7 Summary of element separation in Earth’s compartments today 316
 8.6.8 The elementary composition of living systems 318
 8.6.9 Clays and sulphides: origins of early life? 319
 8.7 Conclusion: Earth’s evolution 320
9 The evolution of organic compounds

9.1 Introduction

9.2 The evolution of carbon chemistry: thermodynamics and kinetics

9.3 The basic reactions of organic chemistry

9.4 Major small organic chemicals: abiotic organic chemistry

9.4.1 Saturated linear fatty chains (alkanes)

9.4.2 Unsaturated and non-linear C/H chains

9.4.3 Substitutional derivatives of C/H compounds

9.5 Shapes of organic molecules

9.5.1 Handedness within shape: optical activity

9.6 A general summary of organic chemical constructions

9.7 Basic practices of organic and biological organic chemistry

9.7.1 Introduction

9.7.2 The apparatus of biological organic chemistry

9.8 General introduction to bioorganic chemistry

9.8.1 Condensation reactions in bioorganic chemistry

9.8.2 Polyfunctional condensation

9.8.3 Peptides and proteins

9.8.4 Nucleic acids

9.8.5 Weak bonds and the folded structures of polymers

9.8.6 The properties of folded polymers

9.8.7 Summary of condensation reactions

9.9 Intermediates: carriers of fragments: cofactors and coenzymes

9.10 Driving energy for biological reactions including condensation

9.10.1 Introduction

9.10.2 Energy from chemicals: disproportionation

9.10.3 Initial sources of energy

9.11 Phosphorus bioorganic chemistry

9.12 Sulphur bioorganic chemistry

9.13 Relative thermodynamic and kinetic stability of organic molecules in water

9.14 Summary of the origins of acid–base organic chemistry

9.15 Organic redox chemistry

9.15.1 Redox reactions at low redox potential

9.15.2 Organic redox chemistry and sulphur

9.15.3 Free-radical reactions and polymerisations

9.15.4 A note on selenium organic chemistry

9.15.5 Summary of redox organic chemistry

9.16 Nature’s need for catalysts in organic chemistry

9.16.1 Metal organic compounds in biological catalysts

9.16.2 Organometallic and co-ordination compounds in organic chemistry

9.17 Organic chemicals in condensed phases

9.17.1 Introduction

9.17.2 Self-assembly of organic molecules

9.17.3 The phase rule and organic molecules

9.18 Abiotic organic chemical cycles

9.19 Summary: the diversity of organic and biological chemistries
10 Early biological chemistry: the uptake and incorporation of elements in anaerobic organisms

10.1 Introduction
10.2 The biological selection of major elements: general introduction
10.3 Biological selection of minor elements
10.4 Examples of essential functions of inorganic elements
 10.4.1 Osmotic pressure control
 10.4.2 Electrical neutrality
 10.4.3 Cross-linking and precipitation
 10.4.4 Electronic conduction
 10.4.5 Catalysis
 10.4.6 Energy capture—synthesis and gradients
 10.4.7 Triggering of mechanical action
 10.4.8 Summary of required elements
10.5 Uptake and incorporation mechanisms of the major elements
 10.5.1 Hydrogen and oxygen uptake and incorporation
 10.5.2 Uptake and incorporation of carbon and nitrogen: introduction
 10.5.3 C/H/O incorporation
 10.5.4 Nitrogen incorporation
 10.5.5 The uptake and incorporation of sulphur and selenium
 10.5.6 Interrelationships of C/H/O/N compound incorporation
 10.5.7 The incorporation of phosphate
 10.5.8 Final stages of the incorporation of the major elements in polymers
 10.5.9 Summary of major element incorporation
10.6 The uptake and incorporation of electrolytes
 10.6.1 Introduction to pumps
 10.6.2 Proton and other ion pumps
10.7 Biological centres in proteins for metal ion incorporation
 10.7.1 Incorporation of metals into cofactors
 10.7.2 Elements in different oxidation states
10.8 Summary of early element uptake and incorporation and of developing functional use
 10.8.1 Catalysis and metal ions
 10.8.2 Fitness of individual sites: the entatic state
 10.8.3 The incorporation of proteins into compartments
10.9 Primitive development of energy sources
10.10 Summary of uptake and incorporation of elements in anaerobic organisms

11 Early cellular organisation in anaerobes

11.1 Introduction
11.2 Co-operative stability in dissipative systems
11.3 The beginning of molecular copying
 11.3.1 Coded polymers: RNA life
 11.3.2 Syntheses of matching sequences of different polymers
 11.3.3 The beginnings of translation
 11.3.4 The selected elements for the coded polymers
11.4 Control and regulation: introduction
11.5 Feedback control of element and small molecule concentrations
11.5.1 The cell as a chemostat: feedback to pumps
11.5.2 Feedback in metabolic pathways of the elements hydrogen, carbon and oxygen
11.5.3 Feedback control of the incorporation of the element nitrogen and of amino acid synthesis
11.5.4 Feedback control of nucleotides: incorporation into polymers
11.5.5 Different pathways for degradation and synthesis in metabolism
11.5.6 Phosphate metabolism and its feedback
11.5.7 Additional elements in controls over pathways
11.6 Redox potential controls
11.6.1 Summary of acid–base and redox control
11.7 The control of shape: mechanical controls
11.7.1 Fields, flow and shape
11.7.2 Early mineralisation
11.8 Regulation: introduction
11.8.1 Phosphate regulation of genes
11.8.2 Other examples of regulation by non-metal elements
11.8.3 Regulation by metal cations
11.8.4 Redox regulation of protein production: sulphur and iron
11.8.5 Control plus regulation—an example: nitrogen fixation
11.9 The different pathways of polymer synthesis and degradation
11.9.1 Cross-talk in regulation
11.10 The integration of element chemistry in control and regulation: summary
11.11 The cell cycle: introduction
11.12 Developmental evolution of anaerobic cells
11.12.1 Intracellular vesicles and their membranes
11.12.2 Contents of internal vesicles
11.13 Symbiosis and differentiation
11.14 Summary

12 The structure and chemistry of organisms after the advent of dioxygen
12.1 Introduction
12.2 Developing organisation
12.2.1 The geological record of evolution
12.2.2 Development of intracellular compartments in aerobic cells
12.2.3 The chemical problems of evolution
12.3 The introduction of new metabolism
12.4 Changing element availability with rising dioxygen partial pressure
12.4.1 The chemical and biological reactions to dioxygen increase with time
12.4.2 Coevolution of the use of new non-metal compounds and metal elements
12.4.3 Energy transduction from dioxygen
12.5 New uptake and incorporation of elements 486
 12.5.1 The new handling of iron uptake 487
 12.5.2 The linking of new iron uptake to phosphate: controls and regulation 488
 12.5.3 Iron uptake in higher organisms and its connections 489
 12.5.4 The uptake, distribution and incorporation of other elements 489
 12.5.5 Changes in the uses of some non-metals 490
12.6 The distribution of elements in compartments 491
 12.6.1 Element distribution in eukaryote cells 491
12.7 New small organic compounds 492
12.8 New proteins and enzymes 494
12.9 Metabolite and protein distribution 495
12.10 Putting together cells with filaments: multicellular systems 496
12.11 The redox metabolism outside cells 498
12.12 Biomineralisation: introduction 499
 12.12.1 Biominerals: examples 500
12.13 Summary 502

13 Organisation in advanced organisms 505
 13.1 Introduction 505
 13.1.1 Control and regulation: a reminder 507
 13.2 The elements in message transmission 508
 13.3 Single eukaryotic cells: control and regulation 509
 13.3.1 The extended use of calcium as a messenger 511
 13.3.2 Phosphate metabolic and signalling changes 513
 13.3.3 Messages to mechanical devices 516
 13.4 Multicellular organisms 517
 13.4.1 Maintained cell shape: single nerve cells 517
 13.4.2 The functional shapes of multicellular organisms and communication 519
 13.4.3 Extracellular fluids and multicellular communication 520
 13.4.4 Zinc and its organic messenger network 525
 13.4.5 Summary of acid–base messengers 527
 13.4.6 Redox communications: free iron and the new messenger networks 527
 13.4.7 Haem iron and the new networks 528
 13.4.8 Copper and new messengers 530
 13.4.9 Other elements in messenger systems 531
 13.5 Interactions between and complexity of messenger systems 532
 13.5.1 The integration of element messages in networks 532
 13.5.2 Total integration of element functions 535
 13.5.3 Organs and their elements 535
 13.6 The problem of development 537
 13.6.1 Adaptability, differentiation and morphogenesis 538
 13.6.2 The problem of the development of an element network 539
 13.7 Conclusions concerning the element content of organisms 539
 13.8 The brain: a phenotypical organisation centre 543
 13.9 Cellular dependencies: genetic management towards an ecosystem 544
 13.10 Summary: complexity, management and survival stability 546
 13.10.1 The ecosystem and man 547
14 Man's selection of the chemical elements

14.1 Introduction 550
14.2 The internal chemistry of man 553
14.3 The evolution of man's industrial inorganic chemistry 557
14.3.1 Inorganic agricultural developments 560
14.3.2 Catalysis and inorganic materials 561
14.3.3 Man's development of energy sources using chemical elements 561
14.3.4 Culture and inorganic materials 564
14.4 The development of industrial organic materials 565
14.5 Organometallic and complex ion chemistry: homogeneous catalysts 566
14.6 Compartments, catalysts and energy 568
14.6.1 Transfer of material 570
14.7 Organisation and control in chemical change 570
14.8 Genetic manipulation: a new industry? 572
14.9 The parallel and the orthogonal activities of man and biology 572

15 Element cycles and their evolution

15.1 Introduction 577
15.2 The nature of 'cycles' 580
15.3 The cycles of the rocks 581
15.4 The cycle of water 582
15.5 The cycle of air 583
15.6 The cycle of oxygen 584
15.7 The cycle of hydrogen 585
15.8 The cycle of carbon 585
15.9 The cycle of nitrogen 587
15.10 The cycles of sulphur and phosphorus 588
15.11 The cycles of light elements and metal ions 589
15.12 The cycling of other elements 590
15.13 The birth of cycles 592
15.14 Life and the cycles 593
15.15 Man's input to cycles 594

16 The evolving natural selection of the chemical elements and the senses

16.1 Introduction: summary of previous chapters 598
16.2 The bases of the initial chemical selection 601
16.2.1 Summary of variance at equilibrium 604
16.3 Co-operativity and selected phase formation on Earth 605
16.4 Steady states and their survival 608
16.5 Flow systems of many elements 611
16.6 Coded systems: DNA 612
16.7 Natural selection and element fitness 613
16.8 Optimal co-operativity in a steady state 614
16.9 Summary of survival values 615
16.10 Changes in components and evolution 616
16.11 Development rates and complexity 617
16.12 DNA, development and evolution 617
16.13 The environment and evolution 618
16.14 Assumptions underlying the steady state 619
 16.14.1 Resources 620
 16.14.2 General considerations concerning waste products 621
 16.14.3 Selfish protection by individual species: population increase 626
16.15 The natural selection of the elements and the nature of man 627
 16.15.1 Understanding 629
 16.15.2 The senses 630
 16.15.3 The brain 631
16.16 Future selection of the chemical elements 632

Index 635