Contents

Foreword xvii

Preface xix

Chapter 1 Introduction And Overview

1.1 TCP/IP Protocols 1
1.2 The Need To Understand Details 1
1.3 Complexity Of Interactions Among Protocols 2
1.4 The Approach In This Text 2
1.5 The Importance Of Studying Code 3
1.6 The Xinu Operating System 3
1.7 Organization Of The Remainder Of The Book 4
1.8 Summary 4

Chapter 2 The Structure Of TCP/IP Software In An Operating System

2.1 Introduction 7
2.2 The Process Concept 8
2.3 Process Priority 9
2.4 Communicating Processes 9
2.5 Interprocess Communication 12
2.6 Device Drivers, Input, And Output 14
2.7 Network Input and Interrupts 14
2.8 Passing Packets To Higher Level Protocols 16
2.9 Passing Datagrams From IP To Transport Protocols 16
2.10 Delivery To Application Programs 18
2.11 Information Flow On Output 19
2.12 From TCP Through IP To Network Output 20
Chapter 3 Network Interface Layer

3.1 Introduction 27
3.2 The Network Interface Abstraction 28
3.3 Logical State Of An Interface 31
3.4 Local Host Interface 31
3.5 Buffer Management 32
3.6 Demultiplexing Incoming Packets 35
3.7 Summary 36

Chapter 4 Address Discovery And Binding (ARP)

4.1 Introduction 39
4.2 Conceptual Organization Of ARP Software 40
4.3 Example ARP Design 40
4.4 Data Structures For The ARP Cache 41
4.5 ARP Output Processing 44
4.6 ARP Input Processing 49
4.7 ARP Cache Management 53
4.8 ARP Initialization 58
4.9 ARP Configuration Parameters 59
4.10 Summary 59

Chapter 5 IP: Global Software Organization

5.1 Introduction 61
5.2 The Central Switch 61
5.3 IP Software Design 62
5.4 IP Software Organization And Datagram Flow 63
5.5 Byte-Ordering In The IP Header 76
5.6 Sending A Datagram To IP 77
5.7 Table Maintenance 80
5.8 Summary 82
Chapter 6 IP: Routing Table And Routing Algorithm

- 6.1 Introduction 85
- 6.2 Route Maintenance And Lookup 85
- 6.3 Routing Table Organization 86
- 6.4 Routing Table Data Structures 87
- 6.5 Origin Of Routes And Persistence 89
- 6.6 Routing A Datagram 89
- 6.7 Periodic Route Table Maintenance 96
- 6.8 IP Options Processing 104
- 6.9 Summary 105

Chapter 7 IP: Fragmentation And Reassembly

- 7.1 Introduction 107
- 7.2 Fragmenting Datagrams 107
- 7.3 Implementation Of Fragmentation 108
- 7.4 Datagram Reassembly 113
- 7.5 Maintenance Of Fragment Lists 122
- 7.6 Initialization 124
- 7.7 Summary 124

Chapter 8 IP: Error Processing (ICMP)

- 8.1 Introduction 127
- 8.2 ICMP Message Formats 127
- 8.3 Implementation Of ICMP Messages 127
- 8.4 Handling Incoming ICMP Messages 130
- 8.5 Handling An ICMP Redirect Message 132
- 8.6 Setting A Subnet Mask 133
- 8.7 Choosing A Source Address For An ICMP Packet 135
- 8.8 Generating ICMP Error Messages 136
- 8.9 Avoiding Errors About Errors 139
- 8.10 Allocating A Buffer For ICMP 140
- 8.11 The Data Portion Of An ICMP Message 142
- 8.12 Generating An ICMP Redirect Message 144
- 8.13 Summary 145
11.12 Summary 214

Chapter 12 TCP: Finite State Machine Implementation 217

12.1 Introduction 217
12.2 CLOSED State Processing 217
12.3 Graceful Shutdown 218
12.4 Timed Delay After Closing 218
12.5 TIME-WAIT State Processing 219
12.6 CLOSING State Processing 221
12.7 FIN-WAIT-2 State Processing 222
12.8 FIN-WAIT-1 State Processing 223
12.9 CLOSE-WAIT State Processing 225
12.10 LAST-ACK State Processing 227
12.11 ESTABLISHED State Processing 228
12.12 Processing Urgent Data In A Segment 229
12.13 Processing Other Data In A Segment 231
12.14 Keeping Track Of Received Octets 233
12.15 Aborting A TCP Connection 236
12.16 Establishing A TCP Connection 237
12.17 Initializing A TCB 237
12.18 SYN-SENT State Processing 239
12.19 SYN-RECEIVED State Processing 240
12.20 LISTEN State Processing 243
12.21 Initializing Window Variables For A New TCB 244
12.22 Summary 246

Chapter 13 TCP: Output Processing 247

13.1 Introduction 247
13.2 Controlling TCP Output Complexity 247
13.3 The Four TCP Output States 248
13.4 TCP Output As A Process 248
13.5 TCP Output Messages 249
13.6 Encoding Output States And TCB Numbers 250
13.7 Implementation Of The TCP Output Process 250
13.8 Mutual Exclusion 251
13.9 Implementation Of The IDLE State 252
13.10 Implementation Of The PERSIST State 252
13.11 Implementation Of The TRANSMIT State 253
13.12 Implementation Of The RETRANSMIT State 255
13.13 Sending A Segment 255
16.7 Reading Data From TCP 314
16.8 Sending Urgent Data 316
16.9 TCP Push Function 317
16.10 Interpreting Push With Out-Of-Order Delivery 318
16.11 Implementation Of Push On Input 319
16.12 Summary 320

Chapter 17 Socket-Level Interface 323

17.1 Introduction 323
17.2 Interfacing Through A Device 323
17.3 TCP Connections As Devices 325
17.4 An Example TCP Client Program 326
17.5 An Example TCP Server Program 327
17.6 Implementation Of The TCP Master Device 329
17.7 Implementation Of A TCP Slave Device 337
17.8 Initialization Of A Slave Device 351
17.9 Summary 352

Chapter 18 RIP: Active Route Propagation And Passive Acquisition 355

18.1 Introduction 355
18.2 Active And Passive Mode Participants 356
18.3 Basic RIP Algorithm And Cost Metric 356
18.4 Instabilities And Solutions 357
18.5 Message Types 361
18.6 Protocol Characterization 361
18.7 Implementation Of RIP 362
18.8 The Principle RIP Process 365
18.9 Responding To An Incoming Request 370
18.10 Generating Update Messages 372
18.11 Initializing Copies Of An Update Message 373
18.12 Generating Periodic RIP Output 378
18.13 Limitations Of RIP 379
18.14 Summary 379

Chapter 19 OSPF: Route Propagation With An SPF Algorithm 381

19.1 Introduction 381
19.2 OSPF Configuration And Options 382
19.3 OSPF’s Graph-Theoretic Model 382
19.4	OSPF Declarations	386
19.5	Adjacency And Link State Propagation	391
19.6	Discovering Neighboring Gateways With Hello	392
19.7	Sending Hello Packets	394
19.8	Designated Router Concept	399
19.9	Electing A Designated Router	400
19.10	Reforming Adjacencies After A Change	404
19.11	Handling Arriving Hello Packets	406
19.12	Adding A Gateway To The Neighbor List	408
19.13	Neighbor State Transitions	410
19.14	OSPF Timer Events And Retransmissions	412
19.15	Determining Whether Adjacency Is Permitted	414
19.16	Handling OSPF input	415
19.17	Declarations And Procedures For Link State Processing	418
19.18	Generating Database Description Packets	421
19.19	Creating A Template	422
19.20	Transmitting A Database Description Packet	424
19.21	Handling An Arriving Database Description Packet	426
19.22	Handling Link State Request Packets	432
19.23	Building A Link State Summary	434
19.24	OSPF Utility Procedures	435
19.25	Summary	439

Chapter 20 SNMP: MIB Variables, Representations, And Bindings 441

20.1	Introduction	441
20.2	Server Organization And Name Mapping	442
20.3	MIB Variables	443
20.4	MIB Variable Names	444
20.5	Lexicographic Ordering Among Names	445
20.6	Prefix Removal	445
20.7	Operations Applied To MIB Variables	446
20.8	Names For Tables	446
20.9	Conceptual Threading Of The Name Hierarchy	447
20.10	Data Structure For MIB Variables	448
20.11	A Data Structure For Fast Lookup	450
20.12	Implementation Of The Hash Table	452
20.13	Specification Of MIB Bindings	452
20.14	Internal Variables Used In Bindings	457
20.15	Hash Table Lookup	458
20.16	SNMP Structures And Constants	461
20.17	ASN.1 Representation Manipulation	464
20.18	Summary	474
Chapter 21 SNMP: Client And Server 477

21.1 Introduction 477
21.2 Data Representation In The Server 477
21.3 Server Implementation 478
21.4 Parsing An SNMP Message 480
21.5 Converting ASN.1 Names In The Binding List 484
21.6 Resolving A Query 485
21.7 Interpreting The Get-Next Operation 487
21.8 Indirect Application Of Operations 487
21.9 Indirection For Tables 490
21.10 Generating A Reply Message Backward 491
21.11 Converting From Internal Form to ASN.1 494
21.12 Utility Functions Used By The Server 495
21.13 Implementation Of An SNMP Client 496
21.14 Initialization Of Variables 498
21.15 Summary 500

Chapter 22 SNMP: Table Access Functions 503

22.1 Introduction 503
22.2 Table Access 504
22.3 Object Identifiers For Tables 504
22.4 Address Entry Table Functions 504
22.5 Address Translation Table Functions 511
22.6 Network Interface Table Functions 521
22.7 Routing Table Functions 529
22.8 TCP Connection Table Functions 538
22.9 Summary 545

Chapter 23 Implementation In Retrospect 547

23.1 Introduction 547
23.2 Statistical Analysis Of The Code 547
23.3 Lines Of Code For Each Protocol 548
23.4 Functions And Procedures For Each Protocol 550
23.5 Summary 551