Foreword xix
Preface xxi
Acknowledgments xxiii
List of contributors xxv

Part I Theory
Foundations

Chapter 1. Parallel and Distributed Computing: The Scene, the Props, the Players 5
Albert Y. Zomaya
1.1 A Perspective 7
1.2 Parallel Processing Paradigms 11
1.3 Modeling and Characterizing Parallel Algorithms 13
1.4 Cost vs. Performance Evaluation 15
1.5 Software and General-Purpose PDC 16
1.6 A Brief Outline of the Handbook 19
1.7 Recommended Reading 19
1.8 References 21

Chapter 2. Semantics of Concurrent Programming 24
J. Desharnais, A. Mili, R. Mili, J. Mullins, and Y. Slimani
2.1 Models of Concurrent Programming 25
2.2 Semantic Definitions 27
Models

Chapter 6. PRAM MODELS

Lydia I. Kronsjö

6.1 Introduction 163
6.2 Techniques for the Design of Parallel Algorithms 165
6.3 The PRAM Model 168
6.4 Optimality and Efficiency of Parallel Algorithms 171
6.5 Basic PRAM Algorithms 175
6.6 The NC-Class 180
6.7 P-Completeness: Hardly Parallelizable Problems 180
6.8 Randomized Algorithms and Parallelism 181
6.9 List Ranking Revisited: Optimal $O(\log n)$ Deterministic List Ranking 184
6.10 Taxonomy of Parallel Algorithms 186
6.11 Deficiencies of the PRAM Model 186
6.12 Summary 189
6.13 References 189

Chapter 7. Broadcasting with Selective Reduction: A Powerful Model of Parallel Computation

Selim G. Akl and Ivan Stojmenović

7.1 Introduction 192
7.2 A Generalized BSR Model 197
7.3 One Criterion BSR Algorithms 200
7.4 Two Criteria BSR Algorithms 212
7.5 Three Criteria BSR Algorithms 215
7.6 Multiple Criteria BSR Algorithms 218
7.7 Conclusions and future Work 220
7.8 References 221

Chapter 8. Dataflow Models

R. Jagannathan

8.1 Kinds of Dataflow 224
8.2 Data-Driven Dataflow Computing Models 225
8.3 Demand-driven Dataflow Computing Models 230
8.4 Unifying Data-Driven and Demand-Driven 234
8.5 Lessons Learned and Future Trends 235
8.6 Summary 236
8.7 References 237

Chapter 9. Partitioning and Scheduling

Hesham El-Rewini

9.1 Program Partitioning 241
9.2 Task Scheduling 243
Chapter 13. Parallel Graph Algorithms

Stephan Olariu

13.1 Graph-Theoretic Concepts and Notation
13.2 Tree Algorithms
13.3 Algorithms for General Graphs
13.4 Algorithms for Particular Classes of Graphs
13.5 Concluding Remarks
13.6 References

Chapter 14. Parallel Computational Geometry

Mikhail J. Atallah

14.1 Parallel CG: Why New Techniques Are Needed
14.2 Basic Subproblems
14.3 CG on the PRAM
14.4 CG on the Mesh
14.5 CG on the Hypercube
14.6 Other Parallel Models
14.7 Conclusions and Future Work
14.8 References

Chapter 15. Data Structures for Parallel Processing

Sajal K. Das and Kwang-Bae Min

15.1 Arrays and Balanced Binary Trees
15.2 Linked Lists
15.3 Trees and Euler Tour
15.4 General Trees and Binarized Trees
15.5 Euler Tour vs. Parentheses String
15.6 Stacks
15.7 Queues
15.8 Priority Queues (Heaps)
15.9 Search Trees/Dictionaries
15.10 Conclusions
15.11 References

Chapter 16. Data Parallel Algorithms

Howard Jay Siegel, Lee Wang, John John E. So, and Muthucumaru Maheswaran

16.1 Chapter Overview
16.2 Machine Model
16.3 Impact of Data Distribution
16.4 CU/PE Overlap
16.5 Parallel Reduction Operations
16.6 Matrix and Vector Operations
Part III Tools and Applications

Development Tools

Chapter 29. Parallel Languages

R. H. Perrott

29.1 Introduction
29.2 Language Categories
29.3 Programming Languages
29.4 Summary
29.5 References

Chapter 30. Tools for Portable High-Performance Parallel Computing

Doreen Y. Cheng

30.1 Introduction
30.2 Criteria for Evaluating Portability Support
30.3 Portable Message-Passing Libraries
30.4 Language-Centered Tools
30.5 Parallelizing Compilers and Preprocessors
30.6 Conclusion
30.7 References

Chapter 31. Visualization of Parallel and Distributed Systems

Michael T. Heath

31.1 Performance Monitoring
31.2 Performance Visualization
31.3 Example
31.4 Future Directions
31.5 References

Chapter 32. Constructing Numerical Software Libraries for High-Performance Computer Environments

Jack J. Dongarra and David W. Walker

32.1 Introduction
32.2 The BLAS as the Key to Portability
32.3 Block Algorithms and Their Derivation
32.4 LU Factorization
32.5 Data Distribution
32.6 Parallel Implementation
32.7 Optimization, Tuning, and Trade-Offs
32.8 Conclusions and Future Research Directions
32.9 References
Chapter 37. Parallel Computation in Biomedicine: Genetic and Protein Sequence Analysis 1071

Tieng K. Yap, Ophir Frieder, and Robert L. Martino

37.1 The Origin of Genetic and Protein Sequence Data 1072
37.2 An Example Database: GenBank 1074
37.3 Residue Substitution Scoring Matrices 1077
37.4 Sequence Comparison Algorithms 1080
37.5 Parallel Techniques for Sequence Similarity Searching 1083
37.6 Performance 1089
37.7 Discussion and Conclusions 1093
37.8 Future Work 1095
37.9 References 1095

Chapter 38. Parallel Algorithms for Solving Stochastic Linear Programs 1097

Amal De Silva and David Abramson

38.1 Stochastic Linear Programming 1098
38.2 Techniques for Solving Stochastic Linear Programs 1104
38.3 Comparison of Methods 1113
38.4 Conclusion and Future Directions 1115
38.5 References 1115

Chapter 39. Parallel Genetic Algorithms 1118

Andrew Chipperfield and Peter Fleming

39.1 What Are Genetic Algorithms? 1118
39.2 Major Elements of the Genetic Algorithm 1121
39.3 Parallel GAs 1130
39.4 Conclusions and Future Trends 1140
39.5 References 1141

Chapter 40. Parallel Processing for Robotic Computations: A Review 1144

Tarek M. Nabhan and Albert Y. Zomaya

40.1 Overview of Robotic Systems 1144
40.2 The Task Planner 1145
40.3 Sensing 1147
40.4 Robot Control 1149
40.5 Applications of Advanced Architectures for Robot Kinematics and Dynamics 1150
40.6 Summary, Conclusions, and Future Directions 1154
40.7 References 1155