CONTENTS

Notes on the Text xix

1 Introduction 1
 1.1 Random Processes and Random Systems 1
 1.1.1 Random Processes 1
 1.1.2 Random Systems 3
 1.1.3 Deterministic Chaos 5
 1.2 Effective Dimensionality and Fractals 6
 1.2.1 The Dimensionality of Sets of Points 6
 1.2.2 Topological Dimension 7
 1.2.3 Hausdorff–Besicovitch Dimension 8
 1.2.4 The Scaling Dimension 10
 1.2.5 Fractals 13
 1.2.6 More Definitions of ‘Dimension’ 14
 1.2.7 Dimensional Multiplicity 16
 1.2.8 Self-similarity vs Self-affinity 16
 1.3 Lattices and Pseudolattices 19
 1.3.1 Basic Terminology 19
 1.3.2 Lattices with Sites Having Integer Coordinates 20
 1.3.3 The Bethe Lattice and its Relatives 22
 1.3.4 Self-similar Lattices and Dilational Invariance 25
 1.3.5 A Collection of Effective Dimensionalities 27
 1.4 Elements of Probability Theory 30
 1.4.1 By Way of Introduction 30
 1.4.2 Random Variables 31
 1.4.3 One-dimensional Random Variables 32
 1.4.4 Co-existing Random Variables 34
 1.4.5 Expectations and Moments 36
 1.4.6 The St Petersburg Game 39
 1.4.7 Fourier Transforms and Moments 39
 1.4.8 Laplace Transforms and Moments 43
 1.4.9 Some Important Inequalities 44
 1.4.10 Forbidden Questions 46
References for Chapter 1 48
2 Random Walks and Random Flights

2.1 History and Heuristics

2.1.1 Origins
2.1.2 Elementary Arguments

2.2 Formal Solutions

2.2.1 Integral Transform Solution
2.2.2 Isotropic Walks or Flights
2.2.3 Some Remarks on One-dimensional Random Flights

2.3 Pearson's Walk in the Plane

2.3.1 Integral Solutions
2.3.2 Closed Form Solutions
2.3.3 Behaviour After Many Steps
2.3.4 Numerical solutions
2.3.5 Walks with Variable Step Length
2.3.6 The Winding Angle Problem

2.4 Some Applications of Pearson's Walk

2.4.1 Random Migration
2.4.2 Superposition of Waves
2.4.3 Vibrations of Unequal Frequency
2.4.4 Miscellany

2.5 Rayleigh's Random Flights

2.5.1 Integral Solutions
2.5.2 Closed Form Solutions
2.5.3 Behaviour After Many Steps
2.5.4 Numerical Solutions

2.6 The Random Flight Model of a Polymer Chain

2.6.1 Background
2.6.2 The End-to-end Distance and the Radius of Gyration
2.6.3 Excluded Volume and Solvent Interaction Effects

2.7 The Method of Steepest Descent

2.7.1 Overview
2.7.2 A One-dimensional Walk
2.7.3 Rayleigh's Random Flights

References for Chapter 2

3 Random Walk on a Lattice

3.1 Introduction

3.1.1 History
3.1.2 Elementary Arguments
3.1.3 Sources
3.1.4 Notations
CONTENTS

3.2 Generating Function Formalism

3.2.1 Tauberian Theorems and Darboux's Theorem 117
3.2.2 Site Occupation and First-Passage Probabilities 119
3.2.3 Recurrence and Transience 121
3.2.4 Mortal Walkers and Killing Times 123
3.2.5 The Recurrence Theorem 124
3.2.6 Mean First-passage Times and Strong Transience 126
3.2.7 Noninteracting Walkers 129
3.2.8 Evolution Laws and Lattice Green Functions 131
3.2.9 Lattice Vibrations and the Harmonic Dimension 133

3.3 Translationally Invariant Walks

3.3.1 Discrete Fourier Analysis and Structure Functions 136
3.3.2 The Simplest One-dimensional Walks 140
3.3.3 Pólya's Theorem 142
3.3.4 Dimensionality Effects in Pólya Walks 145
3.3.5 Walks with Long-ranged Transitions 154
3.3.6 Biased Walks 158

3.4 Defects and Boundaries

3.4.1 Finite Lattices and Pólya's Walk on a Ring 161
3.4.2 Lattices with Defective Sites 165
3.4.3 Taboo Sites 168
3.4.4 One-dimensional Walk With Absorbing Boundaries 169
3.4.5 Remarks on Interacting Random Walkers 174
3.4.6 Gillis' Centrally Biased Random Walk 174

3.5 Walks With Internal States

3.5.1 General Formalism 177
3.5.2 Pólya's Walk on the Hexagonal or Honeycomb Lattice 180

References for Chapter 3 181

4 Random Walks in the Continuum Limit

4.1 Microscopic Derivation of the Diffusion Equation 189
4.1.1 Introduction 189
4.1.2 Real-space Derivation 190
4.1.3 Solutions of the Diffusion Equation 191
4.1.4 First-passage Times 193
CONTENTS

4.2 Walks with Variance Not Necessarily Finite 194
 4.2.1 General Theory 194
 4.2.2 The Riemann Walk 196
 4.2.3 Properties of the Limiting Density 197

4.3 Lévy's Stable Densities 199
 4.3.1 The General Theory of Stable Laws 200
 4.3.2 One-sided Stable Densities 203
 4.3.3 Stable Densities in Higher Dimensions 206
 4.3.4 Bachelier's Chain Equation 207
 4.3.5 Historical Remarks 209

4.4 Random Walks with Self-similar Clusters 210
 4.4.1 Clustering in Random Walk Trajectories 210
 4.4.2 The Weierstrass Random Walk 212
 4.4.3 Lacunary Series and Nondifferentiable Functions 217
 4.4.4 Real-space Renormalization 221

4.5 Walks with Internal States 222
 4.5.1 General Theory 222
 4.5.2 Double Diffusion 224
 4.5.3 Generalized Double Diffusion 225

4.6 Aspects of Continuum Diffusion 227
 4.6.1 Introduction to Continuum Diffusion 227
 4.6.2 The Stokes–Einstein–Smoluchowski Relation 229
 4.6.3 Eigenfunction Methods and a Collection of Dimensions 230

References for Chapter 4 235

5 Continuous-Time Random Walks 241

5.1 Introduction 241
 5.1.1 Models 241
 5.1.2 Renormalization of Waiting Times 245
 5.1.3 Fractal Time 246
 5.1.4 Numbers of Steps Taken in a Given Time Interval 247
 5.1.5 Tauberian Theorems for the Laplace Transform 248
 5.1.6 Waiting-time Densities Varying with Step Number 250

5.2 Theory of the Montroll–Weiss Walk 251
 5.2.1 First-passage Times 252
 5.2.2 Site Occupancy Probabilities 253
 5.2.3 Unknown Starting Times 256
 5.2.4 Relaxation Phenomena in Glasses and
CONTENTS

Polymeric Systems 258

5.3 Montroll–Weiss Walks in One Dimension 264

5.3.1 Site Occupancy Probabilities 265

5.3.2 Mean Position and Dispersion 268

5.3.3 First-passage Times and Walks with Boundaries 274

5.4 Non-separable Continuous-time Random Walks 278

5.4.1 The Scher–Lax Model 278

5.4.2 Translationally Invariant One-dimensional Walks 281

5.4.3 Enhanced Diffusion: ‘Leapers’ and ‘Creepers’ 283

5.5 Master and Generalized Master Equations 289

5.5.1 The Classical Master Equation 289

5.5.2 An Evolution Equation with a Memory 291

5.5.3 Continuous-time Walks and Generalized Master Equations 295

5.6 An Effective Medium Approximation 299

5.6.1 The Basic Formalism 299

5.6.2 The Single Bond Effective Medium Approximation 304

5.7 Renormalization and Walks on Fractals 308

5.7.1 Basic Concepts 308

5.7.2 One-dimensional Walks 310

5.7.3 The Square Lattice 313

5.7.4 The Sierpinski Lattice 314

5.7.5 Relations Between Effective Dimensionalities 316

References for Chapter 5 320

6 Exploration and Trapping 329

6.1 The Mean Number of Sites Visited 329

6.1.1 Where Have I Been? 329

6.1.2 Elementary Analysis of $\langle S_n \rangle$ 331

6.1.3 Generating Function Analysis of $\langle S_n \rangle$ 333

6.1.4 Pólya Walks on Periodic Lattices 336

6.1.5 Walks With Infinite Variance 339

6.1.6 Strongly Transient Walks 340

6.2 The Variance of the Number of Sites Visited 341

6.2.1 The Inequality of Dvoretzky and Erdős 341

6.2.2 Walks with $\text{Var}\{S_n\}$ Asymptotically Linear in n 344

6.2.3 Proof of the Theorem of Jain, Orey, and Pruitt 346
6.2.4 Further Results of Jain and Pruitt on the Variance 353
6.2.5 Other Analyses of the Variance 357
6.2.6 The Asymptotic Distribution of S_n 359

6.3 Generalizations 360
6.3.1 Visits to Sets of Sites 361
6.3.2 Repeated Occupancy 364

6.4 Coloured Sites and Random Traps 369
6.4.1 Lattices with Black and White Sites 369
6.4.2 The Rosenstock Trapping Model 372
6.4.3 Exact Results for the One-dimensional Rosenstock Model 377
6.4.4 The Long-time Behaviour of the Rosenstock Model 385

6.5 Timid and Venturesome Random Walks 390
6.5.1 Walkers Who See Their Own Footprints 390
6.5.2 Energies Based on the Number of Sites Visited 391
6.5.3 Energies Based on the Multiplicity of Site Occupancy 393
6.5.4 Weakly Self-avoiding Walks 395
6.5.5 Sets of Interacting Walkers and Cluster Growth Models 398

6.6 The Ultimate Fate of the Walker 398
6.6.1 Drift Away from the Starting Position 399
6.6.2 Laws of Large Numbers 401
6.6.3 Arcsin Laws 403

References for Chapter 6 403

7 The Self-Avoiding Walk 412
7.1 Introduction 412
7.1.1 The Self-trapping Walk 412
7.1.2 The Self-avoiding Walk 414
7.1.3 Some Variations 417
7.1.4 Equilibrium vs Kinetic Walks 419
7.1.5 Fractal Dimensionalities 420
7.1.6 Sources 422

7.2 Self-avoiding Walks and Polygons 423
7.2.1 The Number of Self-avoiding Walks 423
7.2.2 Inequalities for the Connective Constant 426
7.2.3 Unfolded Walks 436
7.2.4 The Number of Self-avoiding Polygons 439
7.2.5 Walks with Prescribed End-points 444
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.6</td>
<td>Conditions for the Existence of a Critical Exponent for $C(\xi)$</td>
<td>446</td>
</tr>
<tr>
<td>7.2.7</td>
<td>The End-to-end Length in a Self-avoiding Walk</td>
<td>450</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Scaling Arguments</td>
<td>453</td>
</tr>
<tr>
<td>7.3</td>
<td>Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>7.3.1</td>
<td>Exact Enumerations</td>
<td>458</td>
</tr>
<tr>
<td>7.3.2</td>
<td>The Monte Carlo Method</td>
<td>464</td>
</tr>
<tr>
<td>7.3.3</td>
<td>General Considerations in Data Analysis</td>
<td>468</td>
</tr>
<tr>
<td>7.3.4</td>
<td>The Ratio Method of Data Analysis</td>
<td>469</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Neville Tables</td>
<td>472</td>
</tr>
<tr>
<td>7.3.6</td>
<td>More Sophisticated Approaches</td>
<td>474</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Mean-square Displacement and Ring Closure Probability</td>
<td>475</td>
</tr>
<tr>
<td>7.3.8</td>
<td>The Numerical Consensus</td>
<td>480</td>
</tr>
<tr>
<td>7.4</td>
<td>Variations</td>
<td></td>
</tr>
<tr>
<td>7.4.1</td>
<td>Directed Self-avoiding Walks</td>
<td>491</td>
</tr>
<tr>
<td>7.4.2</td>
<td>The Trail Problem</td>
<td>494</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Neighbour-avoiding Walks</td>
<td>497</td>
</tr>
<tr>
<td>7.4.4</td>
<td>k-tolerant Walks</td>
<td>499</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Self-avoiding Lévy Flights</td>
<td>499</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Animals and Aggregates</td>
<td>502</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Walks in Confined Geometries</td>
<td>504</td>
</tr>
<tr>
<td>7.4.8</td>
<td>The Loop-erased Self-avoiding Walk</td>
<td>505</td>
</tr>
<tr>
<td>7.5</td>
<td>Rigorously Solved Problems</td>
<td></td>
</tr>
<tr>
<td>7.5.1</td>
<td>Kasteleyn's Problem</td>
<td>507</td>
</tr>
<tr>
<td>7.5.2</td>
<td>The Spiral Self-avoiding Walk</td>
<td>508</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Convex Polygons</td>
<td>510</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Staircase Polygons</td>
<td>512</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Other Restricted Polygon Problems</td>
<td>513</td>
</tr>
<tr>
<td>7.5.6</td>
<td>Pseudolattices: Trees and Fractals</td>
<td>514</td>
</tr>
<tr>
<td>7.5.7</td>
<td>Self-avoiding Walks on the Sierpinski Lattice</td>
<td>515</td>
</tr>
<tr>
<td>7.6</td>
<td>The Statistical Mechanical Analogy</td>
<td></td>
</tr>
<tr>
<td>7.6.1</td>
<td>The n-vector Model</td>
<td>522</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Mean Field Theory for the n-vector Model</td>
<td>523</td>
</tr>
<tr>
<td>7.6.3</td>
<td>The Upper Critical Dimension</td>
<td>530</td>
</tr>
<tr>
<td>7.6.4</td>
<td>de Gennes' Limit $n \to 0$</td>
<td>534</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Nienhuis' Solution for the Honeycomb Lattice</td>
<td>535</td>
</tr>
<tr>
<td>7.6.6</td>
<td>Applications of Field Theory</td>
<td>542</td>
</tr>
<tr>
<td>References for Chapter 7</td>
<td>547</td>
<td></td>
</tr>
</tbody>
</table>
Appendices

A.1 Special Functions for Random Walk Problems
- A.1.1 The Gamma Function
- A.1.2 Relatives of the Gamma Function
- A.1.3 The Riemann Zeta Function
- A.1.4 Hypergeometric Functions
- A.1.5 The Complete Elliptic Integral
- A.1.6 Bessel Functions
- A.1.7 Modified Bessel Functions
- A.1.8 Integrals of Bessel Functions
- A.1.9 Generalizations of the Hypergeometric Function

A.2 Mellin Transforms and Asymptotic Expansions
- A.2.1 Properties of the Mellin Transform
- A.2.2 Asymptotic Expansions via Mellin Transforms
- A.2.3 The Complete Elliptic Integral $K(k)$ Near $k = 1$
- A.2.4 Series Expansions for Stable Densities
- A.2.5 Structure Functions of One-dimensional Lattice Walks
- A.2.6 A Series of Riemann
- A.2.7 A Series of Weierstrass

A.3 Green Functions for Lattice Walks
- A.3.1 The Square Lattice
- A.3.2 The Triangular Lattice
- A.3.3 The Hexagonal or Honeycomb Lattice
- A.3.4 History of Three-dimensional Lattice Green Functions
- A.3.5 Body-centred Cubic Lattice
- A.3.6 Face-centred Cubic Lattice
- A.3.7 Simple Cubic Lattice

References for the Appendices

Index

569
569
571
573
574
575
577
579
580
581
585
586
588
592
593
595
596
598
599
600
602
603
604
605
607
610
615
621