Contents

Preface
1 Introduction
1.1 Topological defects
1.1.1 A brief history
1.1.2 Overview
1.2 Units and notation
1.3 The standard cosmology
1.3.1 The homogeneous expanding universe
1.3.2 The Einstein equations
1.3.3 Thermal history of the universe
1.3.4 Primordial nucleosynthesis
1.3.5 The microwave background radiation
1.3.6 The growth of density fluctuations
1.3.7 Shortcomings of the standard cosmology

2 Phase transitions in the early universe
2.1 Spontaneous symmetry breaking
2.1.1 Simple models
2.1.2 Non-abelian gauge theories
2.1.3 Symmetry breaking in $SU(2)$ models
2.1.4 Grand unification: An $SO(10)$ example
2.2 The effective potential
2.3 Cosmological phase transitions
2.3.1 Symmetry restoration at high temperature
2.3.2 Second-order phase transitions
2.3.3 First-order phase transitions
2.4 Inflationary scenarios
2.4.1 The inflationary paradigm
2.4.2 Slow-rollover models
2.4.3 Other inflationary models
Contents

3 Topological defects

3.1 Introducing defects

3.1.1 Topological conservation laws

3.1.2 Evading Derrick’s theorem

3.1.3 Higher dimensions

3.1.4 The Kibble mechanism

3.2 Basic properties

3.2.1 Domain walls

3.2.2 Strings

3.2.3 Monopoles

3.2.4 Textures

3.2.5 Transient defects

3.2.6 Time-dependent solitons

3.2.7 Quantum corrections

3.3 Classification

3.3.1 The fundamental group

3.3.2 Lie groups and the fundamental theorem

3.3.3 Higher homotopy groups and exact sequences

3.3.4 Energetic considerations

4 String field theory

4.1 The abelian-Higgs model

4.1.1 Detailed vortex structure

4.1.2 Critical coupling

4.1.3 Global U(1)-strings

4.2 Non-abelian strings

4.2.1 Structure and zero modes

4.2.2 Z_N-strings

4.2.3 Phenomenological strings

4.2.4 Alice strings

4.2.5 Semilocal strings

4.2.6 ‘Electroweak’ strings

4.3 String–string interactions

4.3.1 The inter-vortex potential

4.3.2 Vortex scattering in two dimensions

4.3.3 The two-vortex moduli space

4.3.4 Reconnection in three dimensions

4.4 Effective string actions

4.4.1 The Nambu action

4.4.2 The Kalb–Ramond action

5 Superconducting strings

5.1 Bosonic string superconductivity
Contents

5.1.1 Scalar condensate models 122
5.1.2 Persistent currents 126
5.1.3 Current quenching 128
5.1.4 Worldsheet charge 132
5.1.5 Microphysical string interactions 133
5.1.6 An effective action 134
5.1.7 Current growth in an electric field 136
5.1.8 Gauge boson superconductivity 137
5.2 Fermionic string superconductivity 139
5.2.1 Vortex zero modes 139
5.2.2 Fermionic currents 141
5.2.3 Anomaly cancellation 142
5.2.4 Some Fermi phenomenology 144
5.2.5 Charge carrier scattering 145
5.2.6 Bosonization and the effective action 147
5.2.7 Massive fermionic bound states 148
5.3 Vacuum effects 149
5.3.1 Pair production 149
5.3.2 W-condensation 152

6 String dynamics 154
6.1 The Nambu action 154
6.2 Strings in flat spacetime 156
6.2.1 Equations of motion and gauge fixing 156
6.2.2 Oscillating loops 158
6.2.3 Cusps and kinks 159
6.2.4 Some loop examples 161
6.3 Strings in curved spacetime 163
6.3.1 Gauge fixing 163
6.3.2 Strings in an expanding universe 165
6.3.3 Strings in a stationary field 168
6.4 String interactions 170
6.4.1 Reconnection 170
6.4.2 Loop fragmentation 172
6.5 Strings with small-scale structure 174
6.5.1 Equation of state 174
6.5.2 Wiggly string dynamics 177
6.6 String thermodynamics 178

7 String gravity 182
7.1 Straight string metric 182
7.1.1 Linearized gravity 183
Contents

7.1.2 Full Einstein gravity 185
7.1.3 Gravity in (2+1)-dimensions 191
7.2 Propagation of particles and light 192
 7.2.1 Double images 193
 7.2.2 String Doppler shifts 194
 7.2.3 Field theory in a conical space 195
7.3 Gravitational field of a global string 196
7.4 Gravitational field of an oscillating loop 198
 7.4.1 The average field 199
 7.4.2 Effects of cusps and kinks 200
7.5 Gravitational radiation from a loop 203
 7.5.1 Radiation power 203
 7.5.2 Angular distribution and spectrum 206
 7.5.3 Radiation of momentum 208
7.6 Wiggly string gravity 209
 7.6.1 The average field 209
 7.6.2 Propagation of particles and light 210
 7.6.3 Gravitational radiation 212
 7.6.4 Travelling waves on strings 213
7.7 Self-interaction and related issues 215
 7.7.1 Gravitational back-reaction 215
 7.7.2 Strings as distributional sources 217

8 String interactions 220
8.1 Particle scattering by strings 220
 8.1.1 Scattering cross-section 220
 8.1.2 Frictional force 224
 8.1.3 String dynamics with friction 225
8.2 Particle production 227
8.3 Global string dynamics and radiation 229
 8.3.1 An effective action 229
 8.3.2 Global string dynamics 230
 8.3.3 Goldstone boson radiation 235
8.4 String electrodynamics I: Formalism 238
 8.4.1 Basic equations 238
 8.4.2 Gauge conditions 240
 8.4.3 Charge renormalization 241
8.5 String electrodynamics II: Applications 242
 8.5.1 Free superconducting strings 242
 8.5.2 Strings in an external field 244
 8.5.3 Electromagnetic radiation from loops 246
 8.5.4 Radiative damping and string dynamos 248
8.5.5 Pair production 249
8.5.6 Loop lifetimes 250
8.6 Plasma interactions 251

9 String evolution 257
9.1 String formation 257
9.1.1 The Kibble mechanism 257
9.1.2 Network configuration at formation 259
9.2 Damped epoch evolution 263
9.3 The 'one-scale' model 265
9.3.1 Heuristic picture 265
9.3.2 Strings in an expanding universe 268
9.3.3 The 'scaling' solution 269
9.3.4 Further analytic modelling 272
9.4 Numerical modelling 274
9.4.1 Simulation techniques 275
9.4.2 The 'scaling' regime 277
9.4.3 Long-string substructure 281
9.4.4 Loop production mechanisms 283
9.5 String domination 285
9.5.1 Non-intercommuting strings 286
9.5.2 A tangled network 288
9.6 String–monopole network evolution 289

10 Cosmological implications of strings 292
10.1 Summary of string properties and evolution 292
10.1.1 Gravitational properties of strings 292
10.1.2 String evolution 294
10.2 Microwave background anisotropies 298
10.3 Strings as gravitational lenses 302
10.4 Gravitational radiation background 306
10.4.1 Radiation by loops: simple derivation 306
10.4.2 Radiation by loops: improved derivation 307
10.4.3 Radiation by infinite strings 311
10.4.4 Observational bounds 311
10.5 Black hole formation 313
10.6 Baryon asymmetry 315

11 Structure formation with strings 317
11.1 Defects and structure formation 317
11.2 Accretion onto loops 320
11.2.1 The Zel'dovich approximation 320
11.2.2 Static loops 322
Contents

11.2.3 Moving loops 323
11.2.4 Effects of hot dark matter and baryons 326

11.3 Loops as seeds for galaxies and clusters 328
11.3.1 Cold dark matter 329
11.3.2 Hot dark matter 331
11.3.3 Baryon-dominated universe 333

11.4 Wakes 334
11.4.1 Wakes due to straight strings 334
11.4.2 Wakes due to wiggly strings 337

11.5 Wakes and large-scale structure 338
11.6 Wakes and the origin of cosmic magnetic fields 341
11.7 Outlook 342

12 Cosmology of superconducting and global strings 343
12.1 Superconducting strings 343
12.1.1 String electrodynamics: a review 343
12.1.2 Strings within the Galaxy 347
12.1.3 Light superconducting strings 350
12.1.4 Strings and primordial magnetic fields 353
12.1.5 Springs and vortons 359

12.2 Global string cosmology 362
12.2.1 Global string evolution 362
12.2.2 Goldstone boson background 364
12.2.3 Axion constraints 365

13 Domain walls 368
13.1 Field theory 368
13.1.1 Domain wall models 368
13.1.2 Walls bounded by strings 370

13.2 Domain wall dynamics 372
13.2.1 Action for a domain wall 372
13.2.2 Wall motion 373
13.2.3 Walls in an expanding universe 375
13.2.4 Dynamics of thick domain walls 376
13.2.5 Decay of metastable domain walls 377

13.3 Gravitational effects of domain walls 378
13.3.1 Gravitational field of planar and spherical walls 378
13.3.2 A wall-dominated universe 380

13.4 Interaction with particles 381
13.4.1 Reflection probability 381
13.4.2 Frictional force 383

13.5 Cosmological evolution 384
13.5.1 Domain wall formation 384
13.5.2 Evolution 385
13.5.3 Observational bounds 390
13.5.4 Avoiding wall domination 391
13.6 Evolution of walls bounded by strings 392

14 Monopoles 397
14.1 Field theory 397
14.1.1 The 't Hooft–Polyakov monopole 397
14.1.2 The charge quantization condition 399
14.1.3 Monopole mass and structure 400
14.1.4 Bogomol'nyi bound and Prasad–Sommerfield limit 401
14.1.5 Monopoles and grand unification 402
14.2 Interaction with particles 403
14.2.1 The drag force 403
14.2.2 Baryon decay catalysis 405
14.3 Formation and evolution of monopoles 406
14.3.1 Formation 406
14.3.2 Annihilation mechanisms 407
14.3.3 Observational bounds 410
14.3.4 Solutions to the monopole problem 412
14.4 Monopoles connected by strings 413
14.4.1 Physical properties 413
14.4.2 Formation and evolution 415
14.4.3 Langacker–Pi model 418
14.4.4 Causality considerations 419
14.4.5 Metastable monopoles? 420
14.5 Global monopoles 421
14.5.1 Physical properties 421
14.5.2 Gravitational field 423
14.5.3 Evolution 425
14.5.4 Cosmological implications 426
14.5.5 Global monopoles connected by strings 427

15 Textures 429
15.1 Effective action 429
15.2 Field equations with a constraint 431
15.3 Texture collapse 432
15.4 Gravitational field of a collapsing texture 434
15.5 Cosmological evolution 436
15.6 Cosmological effects of texture 438
15.6.1 Microwave background anisotropy 438
15.6.2 Structure formation 440
15.7 Gauge texture 442
<table>
<thead>
<tr>
<th>16</th>
<th>Topological defects and inflation</th>
<th>444</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Formation of defects after inflation</td>
<td>444</td>
</tr>
<tr>
<td>16.2</td>
<td>Phase transitions during inflation</td>
<td>445</td>
</tr>
<tr>
<td>16.3</td>
<td>Formation of defects by quantum fluctuations</td>
<td>447</td>
</tr>
<tr>
<td>16.4</td>
<td>Defect solutions in de Sitter space</td>
<td>451</td>
</tr>
<tr>
<td>16.5</td>
<td>Quantum nucleation of defects</td>
<td>452</td>
</tr>
<tr>
<td>16.5.1</td>
<td>Physics of nucleation</td>
<td>452</td>
</tr>
<tr>
<td>16.5.2</td>
<td>Cosmological implications of nucleating defects</td>
<td>456</td>
</tr>
<tr>
<td>16.6</td>
<td>String-driven inflation</td>
<td>457</td>
</tr>
</tbody>
</table>

References 460

Index 495