STATISTICAL MECHANICS OF PHASES, INTERFACES, AND THIN FILMS

H. Ted Davis
CONTENTS

1 / Kinetic Theory of Dilute Gases in Equilibrium 1
1.1 Introduction 1
1.2 Equations of State for Pressure and Energy of an Ideal Monatomic Gas 3
1.3 Replacement of Time Averages by Ensemble Averages 6
1.4 Some Definitions from Probability Theory 8
1.5 Maxwell Velocity Distribution 12
1.6 Distribution and Mean Values Derived from Maxwell Distribution 17
1.7 Mean Free Path and Mean Collision Frequency for Rigid Sphere Molecules 23
1.8 Effusion 29
1.9 Evaporation and Chemical Reaction Rates 34
1.10 Experimental Tests of Maxwell's Distribution Law 40
1.11 The Boltzmann Factor and Barometric Formula 43
1.12 Waterson's Contribution to Kinetic Theory 47
 Supplementary Reading 49
 Exercises 49
 References 52

2 / The Elements of Ensemble Theory 55
2.1 Introduction 55
2.2 Intermolecular Forces 55
2.3 Quantum Mechanics of Simple Systems 59
 2.3.1 Particle in a Box 60
 2.3.2 Noninteracting Particles in a Box 62
 2.3.3 Rigid Rotator 62
 2.3.4 One-Dimensional Harmonic Oscillator 64
 2.3.5 A Model Diatomic Molecule in a Box 65
 2.3.6 N Noninteracting Diatomic Molecules of the Type Considered in Case 5 69
 2.3.7 Energy of Hydrogen Atom in a Box 70
 2.3.8 N Noninteracting Hydrogen Atoms in a Box 71
 2.3.9 A Polyatomic Model That Includes Electronic States 71
2.4 Postulates of Ensemble Theory 73
2.5 Canonical Ensemble 74
2.6 Grand Canonical Ensemble 83
2.7 Microcanonical Ensemble 87
9.1 Calculus of Variations and Functional Derivatives 425
 9.1.1 Functional Differentiation 425
 9.1.2 Functional Taylor’s Series 431
 9.1.3 Chain Rule and Inverse Functional Derivative 432
 9.1.4 Implicit Functional Theorem 433
 9.1.5 Functional Differential 433
 9.1.6 Conditions for Extremum for a Functional 434
 9.1.7 Functional Integration 434
9.2 Density Distributions and Correlation Functions 435
9.3 Homogeneous Fluids: Some Exact Results 442
9.4 Homogeneous Fluids: Approximate Theories 449
 9.4.1 Mean Spherical Approximation 449
 9.4.2 PY Approximation 454
 9.4.3 Hypernetted Chain Approximation 454
 9.4.4 Comparison of HNC, PY, and the BGYK Approximations 455
 9.4.5 Hard Sphere Mixtures 457
 9.4.6 Perturbation Approximations 462
9.5 Inhomogeneous Fluids: Some Exact Results 466
Supplementary Reading 469
Exercises 469
References 472

10 / Confined One-Dimensional Fluids 473
10.1 Thermodynamic Properties of Hard-Rod Fluids Between Rigid Walls 473
 10.1.1 Evaluation of Partition Functions and Thermodynamic Functions 473
 10.1.2 Pore Occupancy and Disjoining Pressure of a Pore Fluid 476
10.2 Density Distribution Functions for Hard-Rod Fluids in Arbitrary External Fields 482
10.3 Computation of Density Distributions of Inhomogeneous Hard-Rod Fluids 493
 10.3.1 Reformulation of Integral Equations for Density Distributions 493
 10.3.2 Numerical Methods 496
 10.3.3 Applications 499
10.4 Confined Tonks–Takahashi Fluids 507
 10.4.1 Fluids Confined and in the Presence of an Arbitrary External Field 507
 10.4.2 One-Component Fluids: No External Field (v(x) = 0) 511
Supplementary Reading 518
11 / Density Functional Theory of Fluid Interfaces 521
11.1 Local Density Functional Free Energy Model 521
 11.1.1 The van der Waals Model 521
 11.1.2 A Modified VDW Model 523
 11.1.3 An Approximate Density Functional (ADF) Model 525
 11.1.4 Density Gradient Theory 526
11.2 Local Density Functional Theory of Planar Fluid–Fluid Interfaces 528
11.3 Liquid–Vapor Interfaces: One-Component Fluids 532
11.4 Liquid–Vapor Interfaces: Multicomponent Fluids 536
11.5 Liquid–Liquid Interfaces 550
 Supplementary Reading 553
Exercises 554
References 555

12 / Density Functional Theory of Confined Fluids 557
12.1 Nonlocal Density Functional Free Energy Models 557
 12.1.1 The Generalized VDW Model 561
 12.1.2 The Generalized Hard-Rod Model 562
 12.1.3 The Tarazona Model 562
 12.1.4 The Curtin–Ashcroft Model 564
 12.1.5 The Meister–Kroll Model 565
 12.1.6 Multicomponent Generalizations of the Models 567
12.2 Simple Fluids Confined to Slit Pores 570
12.3 Interactions Between Electrically Charged Confining Surfaces 578
 12.3.1 The Contact Theorem 578
 12.3.2 Disjoining Pressure of Electrical Double Layer: DLVO Theory 580
 12.3.3 Disjoining Pressure of Electrical Double Layer: Density Functional Theory 589
 Supplementary Reading 595
Exercises 595
References 597

13 / Thin Films and Wetting Transitions 599
13.1 Introduction 599
13.2 Gradient Theory of Wetting Transitions 602
13.3 Nonlocal Density Functional Theory of Wetting Transitions 609
13.4 Local Density Functional Theory of Wetting Transitions 614
13.5 Experimental Studies of Wetting Transitions 621
 Supplementary Reading 625
Exercises 625
References 626

CONTENT / xv