Contents of Calculus of Variations II
The Hamiltonian Formalism

Part III. Canonical Formalism and Parametric Variational Problems

Chapter 7. Legendre Transformation, Hamiltonian Systems, Convexity, Field Theories .. 3

1. Legendre Transformations ... 4
 1.1. Gradient Mappings and Legendre Transformations 5

 1.2. Legendre Duality Between Phase and Cophase Space.
 Euler Equations and Hamilton Equations. Hamilton Tensor 18

2. Hamiltonian Formulation
 of the One-Dimensional Variational Calculus 26
 (Eulerian flows and Hamiltonian flows as prolongations of extremal bundles. Canonical description of Mayer fields. The 1-forms of Beltrami and Cartan. The Hamilton-Jacobi equation as canonical version of Carathéodory's equations. Lagrange brackets and Mayer bundles in canonical form.)

 2.2. Hamiltonian Flows and Their Eigentime Functions.
 Regular Mayer Flows and Lagrange Manifolds 33
 (The eigenvalue function of an r-parameter Hamiltonian flow. The Cauchy representation of the pull-back $h^*\kappa_H$ of the Cartan form κ_H with respect to an r-parameter Hamilton flow h by means of an eigenvalue function. Mayer flows, field-like Mayer bundles, and Lagrange manifolds.)

 2.3. Accessory Hamiltonians and the Canonical Form
 of the Jacobi Equation .. 41
 (The Legendre transform of the accessory Lagrangian is the accessory Hamiltonian, i.e. the quadratic part of the full Hamiltonian, and its canonical equations describe Jacobi fields. Expressions for the first and second variations.)
2.4. The Cauchy Problem for the Hamilton–Jacobi Equation 48
(Necessary and sufficient conditions for the local solvability of the Cauchy problem. The Hamilton-Jacobi equation. Extension to discontinuous media: refracted light bundles and the theorem of Malus.)

3. Convexity and Legendre Transformations ... 54

3.1. Convex Bodies and Convex Functions in \(\mathbb{R}^n \) 55
(Basic properties of convex sets and convex bodies. Supporting hyperplanes. Convex hull. Lipschitz continuity of convex functions.)

3.2. Support Function, Distance Function, Polar Body 66
(Gauge functions. Distance function and support function. The support function of a convex body is the distance function of its polar body, and vice versa. The polarity map. Polar body and Legendre transform.)

3.3. Smooth and Nonsmooth Convex Functions, Fenchel Duality 75
(Characterization of smooth convex functions. Supporting hyperplanes and differentiability. Regularization of convex functions. Legendre-Fenchel transform.)

4. Field Theories for Multiple Integrals .. 94

4.1. DeDonder–Weyl’s Field Theory ... 96

4.2. Carathéodory’s Field Theory ... 106

4.3. Lepage’s General Field Theory ... 131
(The general Beltrami form. Lepage’s formalism. Geodesic slope fields. Lepage calibrators.)

4.4. Pontryagin’s Maximum Principle ... 136
(Calibrators and pseudonecessary optimality conditions. (I) One-dimensional variational problems with nonholonomic constraints: Lagrange multipliers. Pontryagin’s function, Hamilton function, Pontryagin’s maximum principle and canonical equations. (II) Pontryagin’s maximum principle for multidimensional problems of optimal control.)

5. Scholia .. 146

Chapter 8. Parametric Variational Integrals .. 153

1. Necessary Conditions ... 154

1.1. Formulation of the Parametric Problem. Extremals and Weak Extremals 155
1.2. Transition from Nonparametric to Parametric Problems and Vice Versa ... 166
(Nonparametric restrictions of parametric Lagrangians. Parametric extensions of nonparametric Lagrangians. Relations between parametric and nonparametric extremals.)

2. Canonical Formalism and the Parametric Legendre Condition 180
2.1. The Associated Quadratic Problem. Hamilton’s Function and the Canonical Formalism .. 180
(The associated quadratic Lagrangian Q of a parametric Lagrangian F. Elliptic and nonsingular line elements. A natural Hamiltonian and the corresponding canonical formalism. Parametric form of Hamilton’s canonical equations.)

2.2. Jacobi’s Geometric Principle of Least Action 188
(The conservation of energy and Jacobi’s least action principle: a geometric description of orbits.)

2.3. The Parametric Legendre Condition and Carathéodory’s Hamiltonians ... 192
(The parametric Legendre condition or C-regularity. Carathéodory’s canonical formalism.)

2.4. Indicatrix, Figuratrix, and Excess Function 201
(Indicatrix, figuratrix and canonical coordinates. Strong and semistrong line elements. Regularity of broken extremals. Geometric interpretation of the excess function.)

3. Field Theory for Parametric Integrals 213
3.1. Mayer Fields and their Eikonals 214

3.2. Canonical Description of Mayer Fields 227
(The parametric Cartan form. The parametric Hamilton-Jacobi equation or eikonal equation. One-parameter families of F-equidistant surfaces.)

3.3. Sufficient Conditions ... 229
(F- and Q-minimizers. Regular Q-minimizers are quasinormal. Conjugate values and conjugate points of F-extremals. F-extremals without conjugate points are local minimizers. Stigmatic bundles of quasinormal extremals and the exponential map of a parametric Lagrangian. F- and Q-Mayer fields. Wave fronts.)

3.4. Huygens’s Principle ... 243
(Complete Figures. Duality between light rays and wave fronts. Huygens’s envelope construction of wave fronts. F-distance function. Foliations by one-parameter families of F-equidistant surfaces and optimal fields.)
4. Existence of Minimizers .. 248
 4.1. A Direct Method Based on Local Existence 248
 (The distance function $d(P, P')$ related to F and its continuity and lower
 semicontinuity properties. Existence of global minimizers based on the local
 existence theory developed in 3.3. Regularity of minimizers.)
 4.2. Another Direct Method Using Lower Semicontinuity 254
 (Minimizing sequences. An equivalent minimum problem. Compactness of
 minimizing sequences. Lower semicontinuity of the variational integral. A
 general existence theorem for obstacle problems. Regularity of minimizers.
 Existence of minimizing F-extremals. Inclusion principle.)
 4.3. Surfaces of Revolution with Least Area 263
 (Comparison of curves with the Goldschmidt polygon. Todhunter's
 ellipse. Comparison of catenaries and Goldschmidt polygons. Conclusive
 results.)
 4.4. Geodesics on Compact Surfaces 270
 (Existence and regularity of F-extremals which minimize the arc
 length.)
5. Scholia .. 275

Part IV. Hamilton–Jacobi Theory
and Partial Differential Equations of First Order

Chapter 9. Hamilton–Jacobi Theory and Canonical Transformations . 283

1. Vector Fields and 1-Parameter Flows 288
1.1. The Local Phase Flow of a Vector Field 290
 (Trajectories, integral curves, maximal flows.)
1.2. Complete Vector Fields and One-Parameter Groups
 of Transformations .. 292
 (Infinitesimal transformations.)
1.3. Lie's Symbol and the Pull-Back of a Vector Field 294
 (The symbol of a vector field and its transformation law.)
1.4. Lie Brackets and Lie Derivatives of Vector Fields 298
 (Commuting flows. Lie derivative. Jacobi identity.)
1.5. Equivalent Vector Fields 303
 (Rectification of nonsingular vector fields.)
1.6. First Integrals ... 304
 (Time-dependent and time-independent first integrals. Functionally
 The two-body problem.)
1.7. Examples of First Integrals 314
 (Lax pairs. Toda lattice.)
1.8. First-Order Differential Equations
 for Matrix-Valued Functions. Variational Equations.
 Volume Preserving Flows 317
 (Liouville formula. Liouville theorem. Autonomous Hamiltonian flows are
 volume preserving.)
1.9. Flows on Manifolds .. 320
 (Geodesics on S^2.)
2. Hamiltonian Systems ... 326
 2.1. Canonical Equations and Hamilton–Jacobi Equations
 Revisited .. 327
 (Mechanical systems. Action. Hamiltonian systems and Hamilton-Jacobi
 equation.)
 2.2. Hamilton’s Approach to Canonical Transformations 333
 (Principal function and canonical transformations.)
 2.3. Conservative Dynamical Systems. Ignorable Variables 336
 (Cyclic variables. Routhian systems.)
 2.4. The Poincaré–Cartan Integral. A Variational Principle
 for Hamiltonian Systems .. 340
 (The Cartan form and the canonical variational principle.)

3. Canonical Transformations ... 343
 3.1. Canonical Transformations
 and Their Symplectic Characterization 343
 (Symplectic matrices. The harmonic oscillator. Poincaré's transformation. The
 Poincaré form and the symplectic form.)
 3.2. Examples of Canonical Transformations.
 Hamilton Flows and One-Parameter Groups
 of Canonical Transformations 356
 (Elementary canonical transformation. The transformations of Poincaré and
 Levi-Civita. Homogeneous canonical transformations.)
 3.3. Jacobi’s Integration Method for Hamiltonian Systems 366
 (Complete solutions. Jacobi's theorem and its geometric interpretation.
 Harmonic oscillator. Brachystochrone. Canonical perturbations.)
 3.4. Generation of Canonical Mappings by Eikonals 379
 (Arbitrary functions generate canonical mappings.)
 3.5. Special Dynamical Problems .. 384
 (Liouville systems. A point mass attracted by two fixed centers. Addition
 theorem of Euler. Regularization of the three-body problem.)
 3.6. Poisson Brackets .. 407
 (Poisson brackets, fields, first integrals.)
 3.7. Symplectic Manifolds ... 417
 (Symplectic geometry. Darboux theorem. Symplectic maps. Exact symplectic
 maps. Lagrangian submanifolds.)

4. Scholia ... 433

Chapter 10. Partial Differential Equations of First Order
and Contact Transformations ... 441

1. Partial Differential Equations of First Order 444
 1.1. The Cauchy Problem and Its Solution by the Method
 of Characteristics .. 445
 (Configuration space, base space, contact space. Contact elements and their
 support points and directions. Contact form, 1-graphs, strips. Integral
 manifolds, characteristic equations, characteristics, null (integral) characteristic,
 characteristic curve, characteristic base curve. Cauchy problem and its local
 solvability for noncharacteristic initial values: the characteristic flow and its
 first integral F, Cauchy's formulas.)
1.2. Lie's Characteristic Equations.
Quasilinear Partial Differential Equations 463
(Lie's equations. First order linear and quasilinear equations, noncharacteristic initial values. First integrals of Cauchy's characteristic equations, Mayer brackets \([F, \Phi]\).)

1.3. Examples 468
(Homogeneous linear equations, inhomogeneous linear equations, Euler's equation for homogeneous functions. The reduced Hamilton-Jacobi equation \(H(x, u_x) = E\). The eikonal equation \(H(x, u_x) = 1\). Parallel surfaces.
Congruences or ray systems, focal points. Monge cones, Monge lines, and focal curves, focal strips. Partial differential equations of first order and cone fields.)

1.4. The Cauchy Problem for the Hamilton–Jacobi Equation 479
(A discussion of the method of characteristics for the equation \(S_t + H(t, x, S_x) = 0\). A detailed investigation of noncharacteristic initial values.)

2. Contact Transformations 485
2.1. Strips and Contact Transformations 486
(Strip equation, strips of maximal dimension (= Legendre manifolds), strips of type \(C^*_r\), contact transformations, transformation of strips into strips, characterization of contact transformations. Examples: Contact transformations of Legendre, Euler, Ampère, dilations, prolonged point transformations.)

2.2. Special Contact Transformations and Canonical Mappings 496
(Contact transformations commuting with translations in \(z\)-direction and exact canonical transformations. Review of various characterizations of canonical mappings.)

2.3. Characterization of Contact Transformations 500
(Contact transformations of \(R^{2n+1}\) can be prolonged to special contact transformations of \(R^{2n+3}\), or to homogeneous canonical transformations of \(R^{2n+2}\). Connection between Poisson and Mayer brackets. Characterization of contact transformations.)

2.4. Contact Transformations and Directrix Equations 511
(The directrix equation for contact transformations of first type: \(\Omega(x, z, x, z) = 0\). Involution. Construction of contact transformations of the first type from an arbitrary directrix equation. Contact transformations of type \(r\) and the associated systems of directrix equations. Examples: Legendre's transformation, transformation by reciprocal polars, general duality transformation, pedal transformation, dilations, contact transformations commuting with all dilations, partial Legendre transformations, apsidal transformation, Fresnel surfaces and conical refraction. Differential equations and contact transformations of second order. Canonical prolongation of first-order to second-order contact transformations. Lie's \(G\-K\)-transformation.)

2.5. One-Parameter Groups of Contact Transformations.
Huygens Flows and Huygens Fields; Vessiot's Equation 541
(One-parameter flows of contact transformations and their characteristic Lie functions. Lie equations and Lie flows. Huygens flows are Lie flows generated by \(n\)-strips as initial values. Huygens fields as ray maps of Huygens flows. Vessiot's equation for the eikonal of a Huygens field.)
2.6. Huygens's Envelope Construction .. 557
(Propagation of wave fronts by Huygens's envelope construction: Huygens's
principle. The indicatrix W and its Legendre transform F. Description of
Huygens's principle by the Lie equations generated by F.)

3. The Fourfold Picture of Rays and Waves 565
3.1. Lie Equations and Herglotz Equations 566
(Description of Huygens's principle by Herglotz equations generated by the
indicatrix function W. Description of Lie's equations and Herglotz's equations
by variational principles. The characteristic equations $S_x = W/M, S_t = -1/M$
for the eikonal S and the directions D of a Huygens field.)

3.2. Hölder's Transformation .. 571
(The generating function F of a Hölder transformation \mathcal{H}_F and its adjoint Φ.
The Hölder transform H of F. Examples. The energy-momentum tensor
$T = p \otimes F_p - F$. Local and global invertibility of \mathcal{H}_F. Transformation
formulas. Connections between Hölder's transformation \mathcal{H}_F and Legendre's
transformation \mathcal{L}_F generated by F: the commuting diagram and Haar's
transformation \mathcal{H}_F. Examples.)

3.3. Connection Between Lie Equations
and Hamiltonian Systems .. 587
(Hölder's transformation \mathcal{H}_F together with the transformation $\theta \mapsto z$ of the
independent variable generated by $z = \Phi$ transforms Lie's equations into a
Hamiltonian system $\dot{x} = H, \dot{y} = -H_x$. Vice versa, the Hölder transform \mathcal{H}_F
with the "eigentime transformation" $z \mapsto \theta$ transforms any
Hamiltonian system into a Lie system. Equivalence of Mayer flows and
Huygens flows, and of Mayer fields and Huygens fields.)

3.4. Four Equivalent Descriptions of Rays and Waves. Fermat's
and Huygens's Principles .. 595
(Under suitable assumptions, the four pictures of rays and waves due to
Euler-Lagrange, Huygens-Lie, Hamilton, and Herglotz are equivalent.
Correspondingly the two principles of Fermat and of Huygens are equivalent.)

4. Scholia ... 600

A List of Examples ... 605
A Glimpse at the Literature ... 610
Bibliography .. 615
Subject Index .. 646