Mariano Giaquinta
Stefan Hildebrandt

Calculus of Variations I

The Lagrangian Formalism

With 73 Figures
Part I. The First Variation and Necessary Conditions

<table>
<thead>
<tr>
<th>Chapter 1. The First Variation</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Critical Points of Functionals</td>
<td>6</td>
</tr>
<tr>
<td>(Necessary conditions for local extrema. Gâteaux and Fréchet derivatives. First variation.)</td>
<td></td>
</tr>
<tr>
<td>2. Vanishing First Variation and Necessary Conditions</td>
<td>11</td>
</tr>
<tr>
<td>2.1. The First Variation of Variational Integrals</td>
<td>11</td>
</tr>
<tr>
<td>(Linear and nonlinear variations. Extremals and weak extremals.)</td>
<td></td>
</tr>
<tr>
<td>2.2. The Fundamental Lemma of the Calculus of Variations, Euler's Equations, and the Euler Operator L_F</td>
<td>16</td>
</tr>
<tr>
<td>(F-extremals. Dirichlet integral, Laplace and Poisson equations, wave equation. Area functional, and linear combinations of area and volume. Lagrangians of the type $F(x, p)$ and $F(u, p)$; conservation of energy. Minimal surfaces of revolution: catenaries and catenoids.)</td>
<td></td>
</tr>
<tr>
<td>2.3. Mollifiers. Variants of the Fundamental Lemma</td>
<td>27</td>
</tr>
<tr>
<td>(Properties of mollifiers. Smooth functions are dense in Lebesgue spaces L^p, $1 \leq p < \infty$. A general form of the fundamental lemma. DuBois-Reymond's lemma.)</td>
<td></td>
</tr>
<tr>
<td>2.4. Natural Boundary Conditions</td>
<td>34</td>
</tr>
<tr>
<td>(Dirichlet integral. Area functional. Neumann's boundary conditions.)</td>
<td></td>
</tr>
<tr>
<td>3. Remarks on the Existence and Regularity of Minimizers</td>
<td>37</td>
</tr>
<tr>
<td>3.1. Weak Extremals Which Do Not Satisfy Euler's Equation. A Regularity Theorem for One-Dimensional Variational Problems</td>
<td>37</td>
</tr>
<tr>
<td>(Euler's paradox. Lipschitz extremals. The integral form of Euler's equations: DuBois-Reymond's equation. Ellipticity and regularity.)</td>
<td></td>
</tr>
<tr>
<td>3.2. Remarks on the Existence of Minimizers</td>
<td>43</td>
</tr>
<tr>
<td>(Weierstrass's example. Surfaces of prescribed mean curvature. Capillary surfaces. Obstacle problems.)</td>
<td></td>
</tr>
<tr>
<td>3.3. Broken Extremals</td>
<td>48</td>
</tr>
<tr>
<td>(Weierstrass-Erdmann corner conditions. Inner variations. Conservation of energy for Lipschitz minimizers.)</td>
<td></td>
</tr>
<tr>
<td>4. Null Lagrangians</td>
<td>51</td>
</tr>
<tr>
<td>4.1. Basic Properties of Null Lagrangians</td>
<td>52</td>
</tr>
<tr>
<td>(Null Lagrangians and invariant integrals. Cauchy's integral theorem.)</td>
<td></td>
</tr>
</tbody>
</table>
4.2. Characterization of Null Lagrangians .. 55
(Structure of null Lagrangians. Exactly the Lagrangians of divergence form
are null Lagrangians. The divergence and the Jacobian of a vector field as
null Lagrangians.)

5. Variational Problems of Higher Order .. 59
Curvature integrals for planar curves. Rotation number of a planar curve. Euler’s
area problem.)

6. Scholia ... 68

Chapter 2. Variational Problems with Subsidiary Conditions 87
1. Isoperimetric Problems .. 89
(The classical isoperimetric problem. The multiplier rule for isoperimetric problems.
Eigenvalues of the vibrating string and of the vibrating membrane. Hypersurfaces of
constant mean curvature. Catenaries.)

2. Mappings into Manifolds: Holonomic Constraints 97
(The multiplier rule for holonomic constraints. Harmonic mappings into hypersurfaces
of \mathbb{R}^{n+1}. Shortest connection of two points on a surface in \mathbb{R}^3. Johann Bernoulli’s
Pendulum equation.)

3. Nonholonomic Constraints ... 110
(Normal and abnormal extremals. The multiplier rule for one-dimensional problems
with nonholonomic constraints. The heavy thread on a surface. Lagrange’s
formulation of Maupertuis’s least action principle. Solenoidal vector fields.)

4. Constraints at the Boundary. Transversality 122
(Shortest distance in an isotropic medium. Dirichlet integral. Generalized Dirichlet
integral. Christoffel symbols. Transversality and free transversality.)

5. Scholia ... 132

Chapter 3. General Variational Formulas .. 145
1. Inner Variations and Inner Extremals. Noether Equations 147
(Energy-momentum tensor. Noether’s equations. Erdmann’s equation and conservation
of energy. Parameter invariant integrals: line and double integrals, multiple integrals.
Jacobi’s geometric version of the least action principle. Minimal surfaces.)

2. Strong Inner Variations, and Strong Inner Extremals 163
(Inner extremals of the generalized Dirichlet integral and conformality relations.
H-surfaces.)

3. A General Variational Formula .. 172
(Fluid flow and continuity equation. Stationary, irrotational, isentropic flow of a
compressible fluid.)

4. Emmy Noether’s Theorem ... 182
(The n-body problem and Newton’s law of gravitation. Equilibrium problems in
equations.)

5. Transformation of the Euler Operator to New Coordinates 198
(Generalized Dirichlet integral. Laplace-Beltrami Operator. Harmonic mappings of
Riemannian manifolds.)

6. Scholia ... 210
Contents of Calculus of Variations I XIX

Part II. The Second Variation and Sufficient Conditions

Chapter 4. Second Variation, Excess Function, Convexity 217

1. Necessary Conditions for Relative Minima 220
 1.1. Weak and Strong Minimizers 221
 (Weak and strong neighbourhoods; weak and strong minimizers; the properties
 \(M \) and \(M' \). Necessary and sufficient conditions for a weak minimizer.
 Scheffer's example.)

1.2. Second Variation: Accessory Integral and Accessory Lagrangian 227
 (The accessory Lagrangian and the Jacobi operator.)

1.3. The Legendre–Hadamard Condition 229
 (Necessary condition for weak minimizers. Ellipticity, strong ellipticity, and
 superellipticity.)

1.4. The Weierstrass Excess Function \(\delta_F \) and Weierstrass's Necessary Condition 232
 (Necessary condition for strong minimizers.)

2. Sufficient Conditions for Relative Minima Based on Convexity Arguments 236
 2.1. A Sufficient Condition Based on Definiteness of the Second Variation 237
 (Convex integrals.)

2.2. Convex Lagrangians 238
 (Dirichlet integral, area and length, weighted length.)

2.3. The Method of Coordinate Transformations 242
 (Line element in polar coordinates. Carathéodory's example. Euler's treatment
 of the isoperimetric problem.)

2.4. Application of Integral Inequalities 250
 (Stability via Sobolev's inequality.)

2.5. Convexity Modulo Null Lagrangians 251
 (The \(H \)-surface functional.)

2.6. Calibrators 254

3. Scholia 260

Chapter 5. Weak Minimizers and Jacobi Theory 264

1. Jacobi Theory: Necessary and Sufficient Conditions for Weak Minimizers Based on Eigenvalue Criteria for the Jacobi Operator 265
 1.1. Remarks on Weak Minimizers 265
 (Scheffer's example: Positiveness of the second variation does not imply
 minimality.)

1.2. Accessory Integral and Jacobi Operator 267
 (The Jacobi operator as linearization of Euler's operator and as Euler operator
 of the accessory integral. Jacobi equation and Jacobi fields.)
1.3. Necessary and Sufficient Eigenvalue Criteria
for Weak Minima .. 271
(The role of the first eigenvalue of the Jacobi operator. Strict Legendre-
Hadamard condition. Results from the eigenvalue theory for strongly elliptic
systems. Conjugate values and conjugate points.)

2. Jacobi Theory for One-Dimensional Problems
in One Unknown Function 276
2.1. The Lemmata of Legendre and Jacobi 276
(A sufficient condition for weak minimizers.)
2.2. Jacobi Fields and Conjugate Values 281
(Jacobi's function $\mathcal{A}(x, \zeta)$. Sturm's oscillation theorem. Necessary and
sufficient conditions expressed in terms of Jacobi fields and conjugate
points.)
2.3. Geometric Interpretation of Conjugate Points 286
(Envelope of families of extremals. Fields of extremals and conjugate points.
Embedding of a given extremal into a field of extremals. Conjugate points and
complete solutions of Euler's equation.)
2.4. Examples .. 292
(Quadratic integrals. Sturm's comparison theorem. Conjugate points
of geodesics. Parabolic orbits and Galileo's law. Minimal surfaces of
revolution.)

3. Scholia .. 306

Chapter 6. Weierstrass Field Theory for One-Dimensional Integrals
and Strong Minimizers 310
1. The Geometry of One-Dimensional Fields 312
1.1. Formal Preparations: Fields, Extremal Fields, Mayer Fields,
and Mayer Bundles, Stigmatic Ray Bundles 313
(Definitions. The modified Euler equations. Mayer fields and their eikonals.
Characterization of Mayer fields by Carathéodory's equations. The
Beltrami form. Lagrange brackets. Stigmatic ray bundles and Mayer
bundles.)
1.2. Carathéodory's Royal Road to Field Theory 327
(Null Lagrangian and Carathéodory equations. A sufficient condition for
strong minimizers.)
1.3. Hilbert's Invariant Integral and the Weierstrass Formula.
Optimal Fields. Kneser's Transversality Theorem 332
(Sufficient conditions for weak and strong minimizers. Weierstrass fields and
optimal fields. The complete figure generated by a Mayer field: The field lines
and the one-parameter family of transversal surfaces. Stigmatic fields and their
value functions $\Sigma(x, \mu)$.)

2. Embedding of Extremals 350
2.1. Embedding of Regular Extremals into Mayer Fields 351
(The general case $N \geq 1$. Jacobi fields and pairs of conjugate values.
Embedding of extremals by means of stigmatic fields.)
2.2. Jacobi's Envelope Theorem 356
(The case $N = 1$: First conjugate locus and envelope of a stigmatic bundle.
Global embedding of extremals.)
2.3. Catenary and Brachystochrone .. 362
(Field theory for integrals of the kind \(\int \omega(x, u) \sqrt{1 + (u')^2} \, dx \) corresponding to Riemannian metrics \(ds = \omega(x, z) \sqrt{dx^2 + dz^2} \). Galilei parabolas. Minimal surfaces of revolution. Poincaré's model of the hyperbolic plane. Brachystochrone.)

2.4. Field-like Mayer Bundles, Focal Points and Caustics 372
(Conjugate base of Jacobi fields and its Mayer determinant \(A(x) \). The zeros of \(A(x) \) are isolated. Sufficient conditions for minimality of an extremal whose left endpoint freely varies on a prescribed hypersurface.)

3. Field Theory for Multiple Integrals in the Scalar Case:
 Lichtenstein's Theorem .. 384

4. Scholia ... 395

Supplement. Some Facts from Differential Geometry and Analysis .. 400
1. Euclidean Spaces .. 400
2. Some Function Classes ... 405
3. Vector and Covector Fields. Transformation Rules 408
4. Differential Forms .. 412
5. Curves in \(\mathbb{R}^N \) .. 421
6. Mean Curvature and Gauss Curvature 425

A List of Examples .. 432
Bibliography .. 437
Subject Index ... 468