Contents

Part I Structure 1

1 Introduction 3

2 Basic Background Material 4
 2.1 Description of Crystalline Oxides 4
 2.2 Defects in Oxides 13
 2.3 Characterization Techniques 20
 2.4 Phase Transitions 27

3 Mother Structures of Some Binary Transition Metal Oxides 29

4 Perovskites and Relatives 37
 4.1 Stoichiometric Perovskites, ABO3 37
 4.2 Nonstoichiometric Perovskites, AxBO3 42
 4.3 Oxygen-Deficient Perovskites 46
 4.4 Close-Packed Structures Derived from the Perovskites 55
 4.5 Intergrowths of Perovskites with Other Structures 57
 4.6 Adaptability of the ReO3-Type Framework with PO4
 Tetrahedra: The Phosphate Tungsten Bronzes 68
 4.7 Introduction of Carbonate and Other Oxyanions in the
 Perovskite Structure 74
5 Octahedral Tunnel Structures: Bronzes and Bronzoids 76
 5.1 Tunnel Structures with Angles of 90° 76
 5.2 Tunnel Structures with Angles of 60°–120° 80
 5.3 Structures with Pentagonal Tunnels 86
 5.4 Other Examples of Octahedral Structures with Large Tunnels 93

6 Octahedral Intersecting Tunnel Structures: Pyrochlores and Relatives 96
 6.1 Pyrochlores 96
 6.2 A_{2}B_{7}O_{18} Oxides 99
 6.3 Pyrochlore Intergrowths: HTB-A_{2}B_{7}O_{18} 101
 6.4 K_{3}Sb_{4}O_{11} and K_{3}Sb_{5}O_{14} 103

7 Octahedral Lamellar Oxides 103
 7.1 Niobates and Titanates of the Formula A_{n}B_{m}O_{3n+2} and Molybdates of the Type Cs_{2}Mo_{3}O_{3n+1} Derived from the Perovskite Structure 104
 7.2 Lamellar Structures Built up of Edge-Sharing Octahedra 105

8 Close-Packed Oxides: Spinels, Hexagonal Ferrites, and Relatives 120
 8.1 Close-Packed and Pseudo-Close-Packed B_{2}O_{4} Oxides 121
 8.2 Close-Packed B_{2}O_{8} Oxides: Relationship with the DH LiFeSnO_{4} Structure 128
 8.3 Hexagonal Ferrites: Relationship with Close-Packed B_{3}O_{8} and B_{3}O_{4} Oxides 135

9 Three-Dimensional Mixed Frameworks Involving Tetrahedra and Octahedra 139
 9.1 Dilicates and Germanates 139
 9.2 Phosphates 146
 9.3 Other Examples of Mixed Frameworks of Octahedra and Tetrahedra 173

10 Examples of Unusual Coordination: The Vanadium Oxides 176

11 Shear Structures 179
 11.1 Shear Structures in Rutile-Type Oxides 179
 11.2 Shear Structures in ReO_{3}-Type Oxides 180

12 The Highly Complex Structural Behavior of Transition Metal Oxides 191
 12.1 Modulated Structures 191
 12.2 Extended Defects and Order-Disorder Phenomena 192
CONTENTS

12.3 Phasoids 199
12.4 Infinitely Adaptive Structures 200
References 205

Part II Properties and Phenomena 211

1 Introduction 213

2 Electrons in Transition Metal Oxides 214
 2.1 Band Model 214
 2.2 Localized Electron Model 219
 2.3 Cluster Model 220
 2.4 Chemical Bond Approach 221

3 Properties of Oxide Materials 224
 3.1 Magnetic Properties 224
 3.2 Electrical Properties 228
 3.3 Superconductivity 232
 3.4 Dielectric and Optical Properties 233

4 Electronic and Magnetic Properties of Oxides in Relation to Structure 235
 4.1 Monoxides 236
 4.2 Dioxides 238
 4.3 Sesquioxides 240
 4.4 Perovskites and Spinels 241

5 Mixed Valence 244

6 Metal–Nonmetal Transitions 246

7 Low-Dimensional Oxides 252

8 Superconducting Oxides 254

9 Ferroics 266

10 Results from Empirical Theory 271

11 Understanding Electronic Structures from Electron Spectroscopy Combined with Empirical Theory 275

12 Nanomaterials 283

13 Catalysts and Gas Sensors 284
 References 286

Part III Preparation of Materials 289

1 Introduction 291

2 Typical Reactions 293
3 Ceramic Preparations 294
4 Use of Precursors 296
5 Topochemical and Intercalation Reactions 301
6 Ion Exchange Method 306
7 Alkali Flux and Electrochemical Methods 308
8 Sol–Gel Method 309
9 Reactions at High Pressures 310
10 Superconducting Cuprates 313
11 Arc and Skull Techniques 315
12 Crystal Growth 317
13 Concluding Remarks 322

References 324

Index 329