The Conceptual Development of Quantum Mechanics

MAX JAMMER

Tomash Publishers

American Institute of Physics
CONTENTS

Preface to the Second Edition ... xi
Preface ... xiii

CHAPTER 1
THE FORMATION OF QUANTUM CONCEPTS
1.1 Unsolved Problems in Classical Physics 1
1.2 The Concept of Quanta of Energy 7
1.3 The Concept of Quanta of Radiation 21
1.4 Elaborations of the Concept of Quanta 36
1.5 Applications of Quantum Conceptions to the Molecular Kinetic Theory ... 45

CHAPTER 2
EARLY APPLICATIONS OF QUANTUM CONCEPTIONS TO LINE SPECTRA
2.1 Regularities in Line Spectra ... 65
2.2 Bohr’s Theory of the Hydrogen Atom 70

CHAPTER 3
THE OLDER QUANTUM THEORY
3.1 Quantum Conditions and the Adiabatic Principle 93
3.2 The Correspondence Principle 110
3.3 The Zeeman Effect and Multiplet Structure 118
3.4 Exclusion Principle and Spin 130

CHAPTER 4
THE TRANSITION TO QUANTUM MECHANICS
4.1 Applications of Quantum Conceptions to Physical Optics ... 166
4.2 The Philosophical Background
 of Nonclassical Interpretations .. 173
4.3 Nonclassical Interpretations of Optical Dispersion 186

CHAPTER 5
THE FORMATION OF QUANTUM MECHANICS

5.1 The Rise of Matrix Mechanics .. 208
5.2 Modifications of Matrix Mechanics 228
5.3 The Rise of Wave Mechanics ... 242

CHAPTER 6
STATISTICAL TRANSFORMATION THEORY

6.1 The Introduction of Probabilistic Interpretations 299
6.2 The Transformation Theory ... 309
6.3 The Statistical Transformation Theory in Hilbert Space ... 323

CHAPTER 7
THE COPENHAGEN INTERPRETATION

7.1 The Uncertainty Relations .. 343
7.2 Complementarity ... 360

CHAPTER 8
VALIDATION OF THE THEORY

8.1 Some Applications of the Theory 384

CHAPTER 9
TWO FUNDAMENTAL PROBLEMS

9.1 Completeness .. 389
9.2 Observation and Measurement ... 392

Concluding Remarks ... 402
Appendix A ... 407
Appendix B ... 410
Appendix C ... 412
Bibliography ... 417
Name Index ... 429