PRODUCTION
AND OPERATIONS
MANAGEMENT
Strategic and Tactical Decisions

FOURTH EDITION

JAY HEIZER
Jesse H. Jones Professor of Business Administration
Texas Lutheran College

BARRY RENDER
Charles Harwood Professor of Operations Management
Crummer Graduate School of Business
Rollins College

PRENTICE HALL, UPPER SADDLE RIVER, NEW JERSEY 07458
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface  x</td>
</tr>
<tr>
<td>Foreword by Philip E. Crosby  xvi</td>
</tr>
</tbody>
</table>

**PART ONE**

**INTRODUCTION**

1 Production/Operations Management  1

- World-Class Profile: Whirlpool  2
- Heritage of Operations Management  4
- Organizing for the Creation of Goods and Services  7
- Why Study P/OM?  7
- What Production/Operations Managers Do  10
- Where Are the P/OM Jobs?  11
- Preparing for a Career in P/OM?  13
- The Productivity Challenge  15
  - Productivity Measurement  17
  - Productivity Variables  18
  - Productivity and the Service Sector  22
- Summary  22  Key Terms  23  Solved Problem  23
- Discussion Questions  24
- Critical Thinking Exercise  24
- Problems  24
- Case Study: National Air Express  26
- Bibliography  27

2 Supplement: Decision-Making Tools  52

- The Analytic Decision Process  53
- Models for Decision Making  54
  - Advantages and Disadvantages of Using Models  55
- Decision Theory  55
  - Fundamentals of Decision Theory  56
  - Decision Trees  60
- Summary  65  Key Terms  65
- Using AB:POM and Spreadsheets to Solve Decision-Theory Problems  65
- Solved Problems  67  Discussion Questions  67
- Critical Thinking Exercise  68
- Problems  68
- Case Study: Toledo Leather Company  73
- Bibliography  74

**PART TWO**

**IDENTIFYING CUSTOMER NEEDS**

3 Total Quality Management  75

- World-Class Profile: Motorola  76
- Defining Quality  78
- Why Quality Is Important  79
- International Quality Standards  80
- Total Quality Management  81
  - Continuous Improvement  82
  - Employee Empowerment  82
  - Benchmarking  84
  - Just-in-Time (JIT)  86
  - Knowledge of TQM Tools  86
  - Tools for TQM  87
  - Quality Function Deployment (QFD)  87
CONTENTS

| Taguchi Technique | 88 |
| Pareto Charts | 90 |
| Process Charts | 91 |
| Cause-and-Effect Diagram | 92 |
| Statistical Process Control (SPC) | 93 |
| The Role of Inspection | 94 |
| When and Where to Inspect | 95 |
| Source Inspection | 95 |
| Service Industry Inspection | 96 |
| Inspection of Attributes vs. Variables | 96 |
| Total Quality Management in Services | 96 |
| Achieving World-Class Standards | 98 |
| Summary | 99 |
| Key Terms | 99 |
| Discussion Questions | 100 |
| Critical Thinking Exercise | 100 |
| Case Studies: Westover Electrical, Inc. | 101 |
| Quality Cleaners | 103 |
| Bibliography | 105 |

4 Statistical Quality Control 107

| World-Class Profile: AVX-Kyocera | 108 |
| Statistical Process Control (SPC) | 110 |
| Control Charts for Variables | 113 |
| The Central Limit Theorem | 113 |
| Setting Mean Chart Limits (X-Charts) | 114 |
| Setting Range Chart Limits (R-Charts) | 116 |
| Control Charts for Attributes | 118 |
| Acceptance Sampling | 121 |
| Sampling Plans | 121 |
| Operating Characteristic (OC) Curves | 123 |
| Producer's and Consumer's Risk | 124 |
| Average Outgoing Quality | 127 |
| Achieving World-Class Standards | 130 |
| Summary | 130 |
| Key Terms | 130 |
| Using AB:POM and Spreadsheets to Solve Quality Control Problems | 131 |
| Solved Problems | 132 |
| Discussion Questions | 134 |
| Critical Thinking Exercise | 134 |
| Problems | 134 |
| Data Base Application | 138 |
| Case Studies: Bayfield Mud Company | 139 |
| SPC at the Gazette | 141 |
| Bibliography | 142 |

4 Supplement: Statistical Tools for Managers 143

| Discrete Probability Distributions | 144 |
| Expected Value of a Discrete Probability Distribution | 145 |
| Variance of a Discrete Probability Distribution | 146 |
| Continuous Probability Distributions | 147 |
| The Normal Distribution | 147 |
| Summary | 151 |
| Key Terms | 151 |
| Using Spreadsheets to Compute Expected Values and Variances | 151 |
| Discussion Questions | 151 |
| Critical Thinking Exercise | 152 |
| Problems | 152 |
| Bibliography | 153 |

5 Forecasting 155

| World-Class Profile: Tupperware | 156 |
| What Is Forecasting | 158 |
| Forecasting Time Horizons | 159 |
| The Influence of Product Life Cycle | 159 |
| Types of Forecasts | 160 |
| Forecasting Approaches | 160 |
| Overview of Qualitative Methods | 160 |
| Overview of Quantitative Methods | 161 |
| Eight Steps to a Forecasting System | 162 |
| Time-Series Forecasting | 163 |
| Decomposition of a Time Series | 163 |
| Naive Approach | 165 |
| Moving Averages | 165 |
| Exponential Smoothing | 167 |
| Exponential Smoothing with Trend Adjustment | 171 |
| Trend Projections | 174 |
| Seasonal Variations in Data | 176 |
| Causal Forecasting Methods: Regression and Correlation Analysis | 178 |
| Using Regression Analysis to Forecast | 178 |
| Standard Error of the Estimate | 181 |
| Correlation Coefficients for Regression Lines | 182 |
| Multiple-Regression Analysis | 184 |
| Monitoring and Controlling Forecasts | 184 |
| Adaptive Smoothing | 186 |
| Focus Forecasting | 187 |
| The Computer's Role in Forecasting | 187 |
| Achieving World-Class Standards | 188 |
| Summary | 188 |
| Key Terms | 188 |
| Using AB:POM and Spreadsheets for Forecasting | 189 |
| Solved Problems | 192 |
| Discussion Questions | 194 |
| Critical Thinking Exercise | 194 |
| Problems | 194 |
| Data Base Application | 203 |
| Case Studies: The North-South Airline | 204 |
| The Akron Zoological Park | 205 |
| Bibliography | 206 |
PART THREE
STRATEGIC DECISIONS FOR MEETING CUSTOMER NEEDS

6 Product Strategy  207
World-Class Profile: Regal Marine  208
Product Selection  210
  Product Options  210
  Identifying New Product Opportunities  211
Product Life Cycles  212
Life Cycle and Strategy  214
Product Development  216
  The Product Development System  216
  Approaches to Product Development  216
  Value Analysis  219
  Time-Based Competition  219
  Product by Value  220
Defining and Documenting the Product  221
  Make or Buy  222
  Group Technology  224
  Computer-Aided Design  225
Preparing for Production  227
  Documentation  227
  Configuration Management  228
Services Products Are Different  228
Application of Decision Trees to Product Design  229
Transition to Production  231
Achieving World-Class Standards  231
  Summary  232
  Key Terms  232
  Solved Problem  233
  Discussion Questions  234
  Critical Thinking Exercise  234
  Problems  234
Case Study: GE's Rotary Compressor  236
Bibliography  237

6 Supplement:
Linear Programming  239
Requirements of a Linear Programming Problem  240
Formulating Linear Programming Problems  241
  Shader Electronics Example  241
Graphical Solution to a Linear Programming Problem  242

7 Process Strategy and Capacity Planning  283
World-Class Profile: Nucor  284
Three Process Strategies  286
  Process Focus  286
  Product Focus  287
  Repetitive Process  287
Moving Toward World-Class Performance with Lean Production  289
Comparison of Process Strategies  291
Selection of Machinery and Equipment  299
Service Process Strategy  294
  Service Sector Considerations  294
  Customer Contact and Process Strategy  295
Capacity  295
  Forecasting Capacity Requirements  297
  Decision Trees Applied to Capacity Decisions  298
  Managing Demand  300
Break-Even Analysis  301
  Single-Product Case  304
  Multiproduct Case  305

Graphical Representation of Constraints  243
Iso-Profit Line Solution Method  244
Corner Point Solution Method  246
Solving Minimization Problems  248
The Simplex Method of LP  250
  Converting the Constraints to Equations  250
  Setting Up the First Simplex Tableau  251
  Simplex Solution Procedures  253
  Summary of Simplex Steps for Maximization Problems  256
  Shadow Prices  256
  Sensitivity Analysis  257
  Artificial and Surplus Variables  258
  Solving Minimization Problems  259
Solving LP Problems by Computer  259
Karmarkar's Algorithm  260
  Summary  261
  Key Terms  261
  Using AB-POM and Spreadsheets to Solve LP Problems  261
Solved Problems  264
  Discussion Questions  268
Critical Thinking Exercise  269
Data Base Application  276
Case Studies:
  Golding Plants and Landscaping  277
  Mexicana Wire Works  278
Bibliography  280
8 State-of-the-Art Technology in P/OM 321

World-Class Profile: AT&T 322
Technology in Manufacturing 324
  Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) 325
  Numerical Control 327
  Process Control 327
  Vision Systems 327
  Robots 328
  Automated Storage and Retrieval Systems (ASRSs) 328
  Automated Guided Vehicles (AGVs) 329
  Flexible Manufacturing Systems (FMSs) 329
  Computer-Integrated Manufacturing (CIM) 329
  Expansion of FMS and CIM 330
Technology in Services 332
Information Sciences in Operations 333
  Transaction Processing 334
  Management Information System (MIS) 335
  Decision Support System (DSS) 335
  Artificial Intelligence 336
Achieving World-Class Standards 338
  Summary 338  Key Terms 339
  Discussion Questions 339
  Critical Thinking Exercises 340  Problems 340
  Case Study: Southern Recreational Vehicle Company 371
  Bibliography 372

9 Supplement: Transportation Modeling 373

Developing an Initial Solution—The Northwest-Corner Rule 375
The Stepping-Stone Method 376
Demand Not Equal to Supply 381
Degeneracy 381
The MODI Method 383
Facility Location Analysis 384
  Summary 387  Key Terms 387
  Using AB POM to Solve Transportation Problems 387
  Solved Problems 388  Discussion Questions 391
  Critical Thinking Exercise 391  Problems 391
  Data Base Application 397
  Case Study: Custom Vans 398
  Bibliography 399

10 Operations Layout Strategy 401

World-Class Profile: Pittsburgh Airport 402
Types of Layout 404
Fixed-Position Layout 406
Process-Oriented Layout 407
  Expert Systems in Layout 412
  Work Cells 412
  Focused Work Center and the Focused Factory 414
Office Layout 415
Retail Store Layout 416
Warehousing and Storage Layouts 418
Product-Oriented Layout 419
Assembly Line Balancing 420
Achieving World-Class Standards 424
Summary 425  Key Terms 426
Using AB:POM to Solve Layout Problems 426
Solved Problems 428  Discussion Questions 432
Critical Thinking Exercise 432  Problems 433
Data Base Application 439
Case Studies: Des Moines National Bank 440
State Automobile License Renewals 442
Bibliography 443

10 Supplement:
Waiting-Line Models 444

Queuing Costs 445
Characteristics of a Waiting-Line System 446
Arrival Characteristics 446
Waiting-Line Characteristics 448
Service Facility Characteristics 449
Measuring the Queue's Performance 451
The Variety of Queuing Models 451
Model A: Single-Channel Queuing Model with Poisson Arrivals and Exponential Service Times 452
Model B: Multiple-Channel Queuing Model 456
Model C: Constant Service Time Model 458
Model D: Limited Population Model 459
Other Queuing Approaches 461
Summary 463  Key Terms 463
Using AB:POM and Spreadsheets to Solve Queuing Problems 463
Solved Problems 465  Discussion Questions 468
Critical Thinking Exercise 469  Problems 469
Case Studies: New England Castings 473
The Winter Park Hotel 475
Bibliography 475

11 Supplement
Work Measurement 503

Labor Standards and Work Measurement 504
Historical Experience 504
Time Studies 504
Predetermined Time Standards 510
Examples from the Service Sector 511
Work Sampling 514
Summary 516  Key Terms 516
Using Spreadsheets to Solve Work Measurement Problems 516
Solved Problems 517  Discussion Questions 520
Critical Thinking Exercises 521  Problems 521
Case Study: Lincoln Electric's Incentive Pay System 525
Bibliography 526

PART FOUR
TACTICAL DECISIONS FOR MEETING CUSTOMER'S NEEDS

12 Purchasing Management and Just-in-Time Strategies 527

World-Class Profile: Boeing 528
Purchasing 530
Operations Environments 530
15 Aggregate Planning  689

World-Class Profile: Anheuser-Busch  690
The Planning Process  692
The Nature of Aggregate Planning  693
Aggregate Planning Strategies  694
  Capacity Options  695
  Demand Options  696
  Mixing Options to Develop a Plan  697
  Level Scheduling  697
Methods for Aggregate Planning  698
  Graphical and Charting Methods  698
  Mathematical Methods for Planning  704
  Comparison of Aggregate Planning Methods  707
Disaggregation  708
Aggregate Planning in Services  708
  Restaurants  708
  Miscellaneous Services  709
  National Chains of Small Service Firms  709
  Airline Industry  709
  Hospitals  709
Achieving World-Class Standards  710
  Summary  710  Key Terms  710
  Using AB:POM to Solve Aggregate Planning Problems  710
  Solved Problems  712  Discussion Questions  715
  Critical Thinking Exercise  715  Problems  715
  Data Base Application  721
  Case Study: Andrew-Carter, Inc.  722
  Bibliography  723

16 Scheduling Tactics  725

World-Class Profile: LTV  726
Scheduling Issues  728
  Forward and Backward Scheduling  729
  Scheduling Criteria  730
Scheduling Process-Focused Work Centers  731
Loading Jobs in Work Centers  731
  Input-Output Control  732
  Gantt Charts  733
  The Assignment Method  735
Sequencing Jobs in Work Centers  738
  Priority Rules for Dispatching Jobs  738
  Critical Ratio  742
Sequencing N Jobs on Two Machines: Johnson’s Rule  743
Sequencing N Jobs on Three Machines  744
Sequencing N Jobs on M Machines  745
Bottleneck Work Centers  746
Limitations of Rule-Based Systems  746
Advances in Scheduling and Sequencing  747
  Expert Systems  747
  Finite Scheduling  747
Repetitive Manufacturing  748
Scheduling for Services  750
  Scheduling Bank Personnel with Linear Programming  751
  Scheduling Nurses with Cyclic Scheduling  751
Achieving World-Class Standards  754
  Summary  754  Key Terms  755
  Using AB:POM to Solve Scheduling Problems  755
  Solved Problems  756  Discussion Questions  761
  Critical Thinking Exercise  762  Problems  762
  Data Base Application  768
  Case Study: Old Oregon Wood Stove  769
  Bibliography  770

17 Project Management  771

World-Class Profile: Bechtel  772
Project Planning  774
18 Maintenance and Reliability 819

World-Class Profile: Orlando Utilities Commission 820
Reliability 823
  Improving Individual Components 823
  Providing Redundancy 826
Maintenance 826
  Implementing Preventive Maintenance 827
  Increasing Repair Capabilities 831
  Other Maintenance Policy Techniques 831

Achieving World-Class Standards 832
  Summary 833  Key Terms 833
  Using AB:POM to Solve Reliability Problems 833
  Solved Problems 834  Discussion Questions 834
  Critical Thinking Exercise 835  Problems 835
  Case Study: Worldwide Chemical Company 838
  Bibliography 839

APPENDIX A
  Areas Under the Standard Normal Table 842

APPENDIX B
  Poisson Distribution Values 843

APPENDIX C
  Values of $e^{-\lambda}$ 845

APPENDIX D
  Table of Random Numbers 845

APPENDIX E
  Using AB:POM 846
  Solutions to Even-Numbered Problems 855
  Glossary 865
  Name Index 879
  Company Index 885
  General Index 887