CONTENTS

Preface to the First Edition xvi
Preface to the Second Edition xxi

1 INTRODUCTION TO RADIATION MEASUREMENTS 1

1.1 What is Meant by Radiation? 1
1.2 Statistical Nature of Radiation Emission 2
1.3 The Errors and Accuracy and Precision of Measurements 3
1.4 Types of Errors 5
1.5 Nuclear Instrumentation 6
 1.5.1 Introduction 6
 1.5.2 The Detector 7
 1.5.3 The NIM Concept 9
 1.5.4 The High-Voltage Power Supply 9
 1.5.5 The Preamplifier 11
 1.5.6 The Amplifier 14
 1.5.7 The Oscilloscope 16
 1.5.8 The Discriminator or Single-Channel Analyzer (SCA) 17
 1.5.9 The Scaler 20
 1.5.10 The Timer 21
 1.5.11 The Multichannel Analyzer 21
Bibliography 21
Reference 21

2 STATISTICAL ERRORS OF RADIATION COUNTING 23

2.1 Introduction 23
2.2 Definition of Probability 23
2.3 Basic Probability Theorems 25
2.4 Probability Distributions and Random Variables 28
CONTENTS

2.5 Location Indexes (Mode, Median, Mean) 30
2.6 Dispersion Indexes, Variance, and Standard Deviation 33
2.7 Covariance and Correlation 33
2.8 The Binomial Distribution 35
2.9 The Poisson Distribution 37
2.10 The Normal (Gaussian) Distribution 39
 2.10.1 The Standard Normal Distribution 43
 2.10.2 Importance of the Gaussian Distribution for Radiation Measurements 45
2.11 The Lorentzian Distribution 46
2.12 The Standard, Probable, and Other Errors 48
2.13 The Arithmetic Mean and Its Standard Error 49
2.14 Confidence Limits 52
2.15 Propagation of Errors 55
 2.15.1 Calculation of the Average and Its Standard Deviation 55
 2.15.2 Examples of Error Propagation—Uncorrelated Variables 56
2.16 Goodness of Data—\(\chi^2 \) Criterion—Rejection of Data 58
2.17 The Statistical Error of Radiation Measurements 62
2.18 The Standard Error of Counting Rates 64
 2.18.1 Combining Counting Rates 67
2.19 Methods of Error Reduction 68
 2.19.1 The Background Is Constant and There Is No Time Limit for Its Measurement 68
 2.19.2 There Is a Fixed Time \(T \) Available for Counting Both Background and Gross Count 69
 2.19.3 Calculation of the Counting Time Necessary to Measure a Counting Rate with a Predetermined Statistical Error 69
 2.19.4 Relative Importance of Error Components 70
2.20 Minimum Detectable Activity 71
2.21 Counter Dead-Time Correction and Measurement of Dead Time 73
 Problems 76
Bibliography 78
References 78

3 REVIEW OF ATOMIC AND NUCLEAR PHYSICS 79

3.1 Introduction 79
3.2 Elements of Relativistic Kinematics 79
3.3 Atoms 83
3.4 Nuclei 86
3.5 Nuclear Binding Energy 88
3.6 Nuclear Energy Levels 91
3.7 Energetics of Nuclear Decays 92
 3.7.1 Gamma Decay 94
 3.7.2 Alpha Decay 96
 3.7.3 Beta Decay 97
 3.7.4 Particles, Antiparticles, and Electron-Positron Annihilation 102
 3.7.5 Complex Decay Schemes 103
3.8 The Radioactive Decay Law 103
CONTENTS ix

3.9 Nuclear Reactions 107
3.9.1 General Remarks 107
3.9.2 Kinematics of Nuclear Reactions 109

3.10 Fission 113

Problems 117
Bibliography 119
References 119

4 ENERGY LOSS AND PENETRATION OF RADIATION THROUGH MATTER 121

4.1 Introduction 121
4.2 Mechanisms of Charged-Particle Energy Loss 122
4.2.1 Coulomb Interactions 122
4.2.2 Emission of Electromagnetic Radiation (Bremsstrahlung) 123
4.3 Stopping Power Due to Ionization and Excitation 124
4.4 Energy Loss Due to Bremsstrahlung Emission 129
4.5 Calculation of dE/dx for a Compound or Mixture 131
4.6 Range of Charged Particles 132
4.6.1 Range of Heavy Charged Particles ($p, d, t, \alpha; 1 \leq A \leq 4$) 133
4.6.2 Range of Electrons and Positrons 138
4.6.3 Transmission of Beta Particles 142
4.6.4 Energy Loss after Traversing a Material of Thickness $t < R$ 143
4.7 Stopping Power and Range of Heavy Ions ($Z > 2, A > 4$) 144
4.7.1 Introduction 144
4.7.2 The dE/dx Calculation 145
4.7.3 Range of Heavy Ions 149
4.8 Interactions of Photons with Matter 150
4.8.1 The Photoelectric Effect 153
4.8.2 Compton Scattering or Compton Effect 154
4.8.3 Pair Production 157
4.8.4 Total Photon Attenuation Coefficient 158
4.8.5 Photon Energy Absorption Coefficient 161
4.8.6 Buildup Factors 162
4.9 Interactions of Neutrons with Matter 166
4.9.1 Types of Neutron Interactions 166
4.9.2 Neutron Reaction Cross Sections 166
4.9.3 The Neutron Flux 171
4.9.4 Interaction Rates of Polyenergetic Neutrons 172
Problems 173
Bibliography 174
References 175

5 GAS-FILLED DETECTORS 177

5.1 Introduction 177
5.2 Relationship Between High Voltage and Charge Collected 179
5.3 Different Types of Gas-Filled Detectors 180
7 SEMICONDUCTOR DETECTORS 235

7.1 Introduction 235
7.2 Electrical Classification of Solids 236
7.2.1 Electronic States in Solids—The Fermi Distribution Function 236
7.2.2 Insulators 238
7.2.3 Conductors 238
7.3 Semiconductors 239
7.3.1 The Change of the Energy Gap with Temperature 241
7.3.2 Conductivity of Semiconductors 243
7.3.3 Extrinsic and Intrinsic Semiconductors—The Role of Impurities 245
7.4 The p-n Junction 246
7.4.1 The Formation of a p-n Junction 246
7.4.2 The p-n Junction Operating as a Detector 250
7.5 The Different Types of Semiconductor Detectors 252
7.5.1 Surface-Barrier Detectors 252
7.5.2 Diffused-Junction Detectors 252
7.5.3 Silicon Lithium-Drifted [Si(Li)] Detectors 254
7.5.4 Germanium Lithium-Drifted [Ge(Li)] Detectors 258
7.5.5 Germanium (Ge) Detectors 258
7.5.6 CdTe and HgI₂ Detectors 259
7.6 Radiation Damage to Semiconductor Detectors 260

8 RELATIVE AND ABSOLUTE MEASUREMENTS 265

8.1 Introduction 265
8.2 Geometry Effects 267
8.2.1 The Effect of the Medium between Source and Detector 267
8.2.2 The Solid Angle—General Definition 268
8.2.3 The Solid Angle for a Point Isotropic Source and a Detector with a Circular Aperture 269
8.2.4 The Solid Angle for a Disk Source Parallel to a Detector with a Circular Aperture 273
8.2.5 The Solid Angle for a Point Isotropic Source and a Detector with a Rectangular Aperture 274
8.2.6 The Solid Angle for a Disk Source and a Detector with a Rectangular Aperture 274
8.2.7 The Use of the Monte Carlo Method for the Calculation of the Solid Angle 276
8.3 Source Effects 277
8.3.1 Source Self-Absorption Factor (f_a) 277
8.3.2 Source Backscattering Factor (f_b) 279
8.4 Detector Effects 282
8.4.1 Scattering and Absorption Due to the Window of the Detector 282
8.4.2 Detector Efficiency (ε) 283
8.4.3 Determination of Detector Efficiency
8.5 Relationship Between Counting Rate and Source Strength
Problems
References

9 INTRODUCTION TO SPECTROSCOPY

9.1 Introduction
9.2 Definition of Energy Spectra
9.3 Measurement of an Integral Spectrum with a Single-Channel Analyzer
9.4 Measurement of a Differential Spectrum with a Single-Channel Analyzer (SCA)
9.5 The Relationship Between Pulse-Height Distribution and Energy Spectrum
9.6 Energy Resolution of a Detection System
 9.6.1 The Effect of Statistical Fluctuations: The Fano Factor
 9.6.2 The Effect of Electronic Noise on Energy Resolution
 9.6.3 The Effect of Incomplete Charge Collection
 9.6.4 The Total Width Γ
9.7 Determination of the Energy Resolution—The Response Function
9.8 The Importance of Good Energy Resolution
9.9 Brief Description of a Multichannel Analyzer (MCA)
9.10 Calibration of a Multichannel Analyzer
Problems
References

10 ELECTRONICS

10.1 Introduction
10.2 Resistance, Capacitance, Inductance, and Impedance
10.3 A Differentiating Circuit
10.4 An Integrating Circuit
10.5 Delay Lines
10.6 Pulse Shaping
10.7 Timing
 10.7.1 The Leading-Edge Timing Method
 10.7.2 The Zero-Crossing Timing Method
 10.7.3 The Constant-Fraction Timing Method
10.8 Coincidence-Anticoincidence Measurements
10.9 Pulse-Shape Discrimination
10.10 Preamplifiers
10.11 Amplifiers
10.12 Analog-to-Digital Converters (ADC)
10.13 Multiparameter Analyzers
Problems
Bibliography
References
CONTENTS
11 DATA ANALYSIS METHODS
11.1 Introduction 353
11.2 Curve Fitting 353
11.3 Interpolation Schemes 355
11.4 Least-Squares Fitting 359
 11.4.1 Least-Squares Fit of a Straight Line 360
 11.4.2 Least-Squares Fit of General Functions 361
11.5 Folding and Unfolding 364
 11.5.1 Examples of Folding 365
 11.5.2 The General Method of Unfolding 368
 11.5.3 An Iteration Method of Unfolding 371
 11.5.4 Least-Squares Unfolding 372
11.6 Data Smoothing 373
Problems 377
Bibliography 378
References 378

12 PHOTON (GAMMA-RAY AND X-RAY) SPECTROSCOPY 381
12.1 Introduction 381
12.2 Modes of Energy Deposition in the Detector 381
 12.2.1 Energy Deposition by Photons with $E < 1.022$ MeV 382
 12.2.2 Energy Deposition by Photons with $E > 1.022$ MeV 385
12.3 Efficiency of X-Ray and Gamma-Ray Detectors: Definitions 389
12.4 Detection of Photons with NaI(Tl) Scintillation Counters 392
 12.4.1 Efficiency of NaI(Tl) Detectors 392
 12.4.2 Analysis of Scintillation Detector Energy Spectra 395
12.5 Detection of Gammas with an NE 213 Organic Scintillator 398
12.6 Detection of X-Rays with a Proportional Counter 399
12.7 Detection of Gammas with Ge Detectors 400
 12.7.1 Efficiency of Ge Detectors 401
 12.7.2 Energy Resolution of Ge Detectors 411
 12.7.3 Analysis of Ge Detector Energy Spectra 412
 12.7.4 Timing Characteristics of the Pulse 418
12.8 CdTe and HgI$_2$ Detectors as Gamma Spectrometers 419
12.9 Detection of X-Rays with a Si(Li) Detector 420
12.10 Detection of X-Rays with a Crystal Spectrometer 421
 12.10.1 Types of Crystal Spectrometers 426
 12.10.2 Energy Resolution of Crystal Spectrometers 428
Problems 430
Bibliography 431
References 431

13 CHARGED-PARTICLE SPECTROSCOPY 433
13.1 Introduction 433
13.2 Energy Straggling 434
13.3 Electron Spectroscopy 439
 13.3.1 Electron Backscattering 439
 13.3.2 Energy Resolution and Response Function of Electron Detectors 441
 13.3.3 Energy Calibration of Electron Spectrometers 442
 13.3.4 Electron Source Preparation 444

13.4 Alpha, Proton, Deuteron, and Triton Spectroscopy 445
 13.4.1 Energy Resolution and Response Function of Alpha Detectors 446
 13.4.2 Energy Calibration 446
 13.4.3 Source Preparation 446

13.5 Heavy-Ion (Z > 2) Spectroscopy 447
 13.5.1 The Pulse-Height Defect 447
 13.5.2 Energy Calibration: The Schmitt Method 450
 13.5.3 Calibration Sources 452
 13.5.4 Fission Foil Preparation 452

13.6 The Time-of-Flight Spectrometer 453

13.7 Detector Telescopes (\(E dE/dx\) Detectors) 455

13.8 Magnetic Spectrometers 456

13.9 Electrostatic Spectrometers 458

13.10 Position-Sensitive Detectors 459
 13.10.1 Position-Sensitive Semiconductor Detectors 459
 13.10.2 Multiwire Proportional Chambers 461

Problems 462
Bibliography 463
References 463

14 NEUTRON DETECTION AND SPECTROSCOPY 467

14.1 Introduction 467

14.2 Neutron Detection by (n, Charged Particle) Reaction 468
 14.2.1 The BF\(_3\) Counter 469
 14.2.2 Boron-Lined Counters 473
 14.2.3 \(^6\)Li Counters 474
 14.2.4 \(^3\)He Counters 475

14.3 Fission Chambers 476

14.4 Neutron Detection by Foil Activation 478
 14.4.1 Basic Equations 478
 14.4.2 Determination of the Neutron Flux by Counting the Foil Activity 482

14.5 Measurement of a Neutron Energy Spectrum by Proton Recoil 484
 14.5.1 Differentiation Unfolding of Proton Recoil Spectra 487
 14.5.2 The FERDOR Unfolding Method 488
 14.5.3 Proportional Counters Used as Fast-Neutron Spectrometers 489
 14.5.4 Organic Scintillators Used as Fast-Neutron Spectrometers 494

14.6 Detection of Fast Neutrons Using Threshold Activation Reactions 496
 14.6.1 The Code SAND-II 501
 14.6.2 The Code SPECTRA 502
 14.6.3 The Relative Deviation Minimization Method (RDMM) 502
 14.6.4 The LSL-M2 Unfolding Code 503

14.7 Neutron Energy Measurement with a Crystal Spectrometer 503
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.8</td>
<td>Radiation Protection Guides and Exposure Limits</td>
<td>567</td>
</tr>
<tr>
<td>16.9</td>
<td>Health Physics Instruments</td>
<td>570</td>
</tr>
<tr>
<td>16.9.1</td>
<td>Survey Instruments</td>
<td>571</td>
</tr>
<tr>
<td>16.9.2</td>
<td>Thermoluminescent Dosimeters</td>
<td>572</td>
</tr>
<tr>
<td>16.9.3</td>
<td>Solid-State Track Recorders (SSTRs)</td>
<td>576</td>
</tr>
<tr>
<td>16.9.4</td>
<td>The Bonner Sphere (the Rem Ball)</td>
<td>579</td>
</tr>
<tr>
<td>16.9.5</td>
<td>The Neutron Bubble Detector</td>
<td>580</td>
</tr>
<tr>
<td>16.9.6</td>
<td>The Electronic Personal Dosimeter</td>
<td>581</td>
</tr>
<tr>
<td>16.9.7</td>
<td>Foil Activation Used for Neutron Dosimetry</td>
<td>582</td>
</tr>
<tr>
<td>16.10</td>
<td>Proper Use of Radiation</td>
<td>582</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>587</td>
</tr>
</tbody>
</table>

APPENDIXES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Useful Constants and Conversion Factors</td>
<td>589</td>
</tr>
<tr>
<td>B</td>
<td>Atomic Masses and Other Properties of Isotopes</td>
<td>591</td>
</tr>
<tr>
<td>C</td>
<td>Alpha, Beta, and Gamma Sources Commonly Used</td>
<td>595</td>
</tr>
<tr>
<td>D</td>
<td>Tables of Photon Attenuation Coefficients</td>
<td>599</td>
</tr>
<tr>
<td>E</td>
<td>Table of Buildup Factor Constants</td>
<td>605</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>607</td>
</tr>
</tbody>
</table>