Multiple Criteria Optimization: Theory, Computation, and Application

RALPH E. STEUER
College of Business Administration
University of Georgia

Krieger Publishing Company
Malabar, Florida
Contents

1. INTRODUCTION

1.1 The Multiple Objective Programming Problem 1
1.2 Multiple Criteria Examples 2
1.3 Multiple Criteria Optimization 3
1.4 Optimal versus Final Solutions 4
1.5 Relationship to Multiattribute Decision Analysis 5
1.6 Notation 5

2. MATHEMATICAL BACKGROUND

2.1 Set Theory 11
 2.1.1 Specifying Sets and Indicating Membership 11
 2.1.2 Subsets, Supersets, and Set Equality 12
 2.1.3 Disjoint Sets and Families 13
 2.1.4 Set Operations 13
 2.1.5 The Real Line and Intervals 13
 2.1.6 Generalized Operations, Index Sets, and Cardinality 14
 2.1.7 Partitions 15
 2.1.8 Mappings and Functions 15
 2.1.9 Ordered n-Tuples and Cartesian Products 16
 2.1.10 Graph of a Function 17
 2.1.11 Relations 17

2.2 Topics from Linear Algebra 18
 2.2.1 Matrices 18
 2.2.2 Matrix Operations 20
 2.2.3 Special Matrices and Vectors 21
 2.2.4 Determinants 22
 2.2.5 Solving Systems of Linear Equations Using Determinants 23
 2.2.6 Computing the Inverse of a Matrix 24
CONTENTS

2.2.7 Solving Systems of Linear Equations Using Inverses 25
2.2.8 Vectors and Points in n-Space 25
2.2.9 Linear and Convex Combinations of Vectors 26
2.2.10 Linear Independence 27
2.2.11 Rank of a Matrix 28
2.2.12 Bases 29
2.2.13 Number of Solutions of a System of Linear Equations 30
2.2.14 Some Further Examples of Functions 30

2.3 Properties of Points and Sets in R^n 31
2.3.1 Open and Closed Sets 31
2.3.2 Convex Sets and Extreme Points 31
2.3.3 Images of Convex Sets 34
2.3.4 Dimensionality and Set Addition 34
2.3.5 Hyperplanes and Half-Spaces 36
2.3.6 Connected Sets and Discrete Sets 36

2.4 Cones 38
2.4.1 Generators 38
2.4.2 Dimensionality of a Cone 39
2.4.3 Extreme Rays and Polyhedral Cones 39
2.4.4 Polar Cones 40

2.5 Norms and Metrics 42
2.5.1 Family of L_p-Norms 43
2.5.2 Family of L_p-Metrics 44
2.5.3 Family of Weighted L_p-Metrics 45

3. SINGLE OBJECTIVE LINEAR PROGRAMMING 55

3.1 Gradients and Level Curves 57
3.2 A Linear Programming Example 59
3.3 Graphical Examples 60
3.4 Simplex Method 66
3.4.1 Standard Equality Constraint Format 67
3.4.2 Initial Tableau 68
3.4.3 Pivoting Procedure 70
3.4.4 Method of Rectangles 73
3.4.5 Inconsistency and Unboundedness 74
3.4.6 Degeneracy and Alternative Optima 75
3.5 Duality Theory 76
3.6 Nonpositive and Unrestricted Variables 78
3.7 **MPSX** Input Format 79
CONTENTS

3.8 Anatomy of a Simplex Tableau 81
3.9 Two-Phase Method of Linear Programming 85
3.10 Dual Simplex Algorithm 87
3.11 Solving a Series of Similar LPs 89
 3.11.1 When Only the Objective Function Changes 89
 3.11.2 When Only the RHS Vector Changes 90
 3.11.3 When a Constraint Matrix Column Changes 90
3.12 More About Linear Programming 91

4. DETERMINING ALL ALTERNATIVE OPTIMA 99

 4.1 Classification of Single Objective LPs 99
 4.2 Notes on Pivoting and Coding 101
 4.3 Crashing 107
 4.4 Master Lists 109
 4.5 Phase III Numerical Example 110

5. COMMENTS ABOUT OBJECTIVE ROW PARAMETRIC PROGRAMMING 120

 5.1 Conventional Parametric Programming 121
 5.2 Convex Combination Parametric Programming 123
 5.3 Criterion Cone Parametric Programming 127
 5.4 MOLP Approach 132

6. UTILITY FUNCTIONS, NONDOMINATED CRITERION VECTORS, AND EFFICIENT POINTS 138

 6.1 Utility Function Shapes 139
 6.2 Monotonicity 143
 6.3 Feasible Region in Criterion Space 145
 6.4 Utility Function Approach 146
 6.5 Dominance 147
 6.6 Nondominated Criterion Vectors 148
 6.7 Efficiency 149
 6.8 Detecting Efficiency Using Domination Sets 150
 6.9 Nonconcave Utility Functions 154
 6.10 Optimality Peculiarities with Multiple Objectives 155
 6.11 Efficient Extreme Points of Greatest Utility 156
 6.12 Effect of Nonlinearities 158
7. POINT ESTIMATE WEIGHTED-SUMS APPROACH

7.1 Figure-of-Merit Interpretation
7.2 Mathematical Motivation
7.3 What Are the Weights?
7.4 Determining the Weights
7.5 Criterion Cone
 7.5.1 When the Null Vector Condition Does Not Hold
 7.5.2 When the Null Vector Condition Holds
7.6 Relative Interior of the Criterion Cone
7.7 Detecting Efficient Points Using Composite Gradients
7.8 Relationship between the Criterion Cone and
 Domination Set
7.9 Efficient Facets of the Feasible Region S
7.10 Computing Subsets of Weighting Vectors

8. OPTIMAL WEIGHTING VECTORS, SCALING, AND
 REDUCED FEASIBLE REGION METHODS

8.1 Optimal Weighting Vector Estimation Difficulties
 8.1.1 Dependence on the Decision Maker’s
 Preferences
 8.1.2 Dependence on the Relative Lengths of the
 Objective Function Gradients
 8.1.3 Dependence on the Feasible Region
8.2 Difficulties Caused by the Degree to Which Objectives
 Are Correlated
8.3 Additional Optimal Weighting Vector Difficulties
8.4 Scaling the Objective Functions
 8.4.1 Use of 10 Raised to an Appropriate Power
 8.4.2 Use of Range Equalization Factors
8.5 e-Constraint Reduced Feasible Region Method
 8.5.1 Operation of the e-Constraint Approach
 8.5.2 Different Types of Outcomes
 8.5.3 Sensitivity Analysis
8.6 Near Optimality Analysis

9. VECTOR-MAXIMUM ALGORITHMS

9.1 Foundations
9.2 Vector-Maximum Theory
9.3 A Vector-Maximum Algorithm
9.4 Weak Efficiency 221
9.5 Classification of MOLPs 224
9.6 Finding an Initial Efficient Basis 225
 9.6.1 Subproblem Test for Extreme Point Efficiency 225
 9.6.2 Methods for Finding an Efficient Extreme Point 226
9.7 Subproblem Tests for Nonbasic Variable Efficiency 233
 9.7.1 Evans-Steuer Test 233
 9.7.2 Isermann's Test 233
 9.7.3 Ecker's Method 235
 9.7.4 Zions-Wallenius Routine 236
9.8 Computing All Maximally Efficient Facets 242
9.9 Vector-Maximum Approach for Solving an MOLP 245
9.10 Contracting the Criterion Cone 246
 9.10.1 Interval Criterion Weights Criterion Cone 247
 9.10.2 Enveloping Reduced Criterion Cone 250
 9.10.3 Some Specific E-Cone Contractions 252
9.11 ADBASE Program 254
 9.11.1 ADBASE Input Format 255
 9.11.2 Versatility of ADBASE 259
 9.11.3 ADBASE Six-Field Format 260
 9.11.4 An ADBASE Example 261
9.12 Computational Experience 261
9.13 Minimum Criterion Values over the Efficient Set 267
 9.13.1 Payoff Tables 267
 9.13.2 Properties of the Minimum Criterion Value Problem 268
 9.13.3 A Simplex-Based Algorithm 269

10. GOAL PROGRAMMING 282
10.1 Goals and Utopian Sets 283
10.2 Archimedean GP
 10.2.1 Contours of Archimedean Objective Functions 286
 10.2.2 Archimedean GP Solutions 289
10.3 OCMM Models 290
10.4 Preemptive GP 292
10.5 Lexicographic Simplex Method 295
10.6 Goal Efficiency 296
10.7 Sensitivity Issues 298
10.8 Interactive GP 298
10.9 Minimizing Maximum Deviation 299
10.10 Multiple Criterion Function GP 300
10.11 GP Software 301
11. FILTERING AND SET DISCRETIZATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Forward and Reverse Filtering</td>
<td>311</td>
</tr>
<tr>
<td>11.2</td>
<td>Weighted L_p Distance Measure</td>
<td>312</td>
</tr>
<tr>
<td>11.3</td>
<td>Range Equalization Weights</td>
<td>313</td>
</tr>
<tr>
<td>11.4</td>
<td>Mechanics of Forward Filtering</td>
<td>314</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Method of First Point outside the Neighborhoods</td>
<td>314</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Halving and Doubling Strategy</td>
<td>316</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Initial Values of d and Δd</td>
<td>316</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Method of Closest Point outside the Neighborhoods</td>
<td>318</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Method of Furthest Point outside the Neighborhoods</td>
<td>320</td>
</tr>
<tr>
<td>11.4.6</td>
<td>Maximally Dispersed Subsets</td>
<td>320</td>
</tr>
<tr>
<td>11.4.7</td>
<td>Unattained Set Sizes</td>
<td>321</td>
</tr>
<tr>
<td>11.5</td>
<td>Reverse Filtering</td>
<td>321</td>
</tr>
<tr>
<td>11.6</td>
<td>FILTER Program</td>
<td>322</td>
</tr>
<tr>
<td>11.7</td>
<td>Interactive Forward and Reverse Filtering</td>
<td>324</td>
</tr>
<tr>
<td>11.8</td>
<td>Set Discretization</td>
<td>326</td>
</tr>
<tr>
<td>11.8.1</td>
<td>Predetermined Convex Combinations</td>
<td>327</td>
</tr>
<tr>
<td>11.8.2</td>
<td>Convex Combinations Drawn from the Uniform Distribution</td>
<td>328</td>
</tr>
<tr>
<td>11.8.3</td>
<td>Convex Combinations Drawn from the Weibull Distribution</td>
<td>329</td>
</tr>
<tr>
<td>11.8.4</td>
<td>50-50 Strategy</td>
<td>329</td>
</tr>
<tr>
<td>11.9</td>
<td>LAMBDA Program</td>
<td>330</td>
</tr>
</tbody>
</table>

12. MULTIPLE OBJECTIVE LINEAR FRACTIONAL PROGRAMMING

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Single Objective Linear Fractional Programming</td>
<td>337</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Variable Transformation Method</td>
<td>340</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Updated Objective Function Method</td>
<td>343</td>
</tr>
<tr>
<td>12.2</td>
<td>When the Denominator Vanishes</td>
<td>345</td>
</tr>
<tr>
<td>12.3</td>
<td>Weak and Strong Efficiency</td>
<td>347</td>
</tr>
<tr>
<td>12.4</td>
<td>An MOLFP Example and Terminology</td>
<td>348</td>
</tr>
<tr>
<td>12.5</td>
<td>Graphical Detection of Efficiency</td>
<td>349</td>
</tr>
<tr>
<td>12.6</td>
<td>Additional MOLFP Examples</td>
<td>351</td>
</tr>
<tr>
<td>12.7</td>
<td>An MOLFP Example with a Nonlinear E^w Boundary</td>
<td>354</td>
</tr>
<tr>
<td>12.8</td>
<td>MOLFP Algorithms</td>
<td>355</td>
</tr>
</tbody>
</table>
13. INTERACTIVE PROCEDURES

13.1 STEM
 13.1.1 STEM Algorithm
 13.1.2 STEM Sample Output
 13.1.3 STEM Comments

13.2 Geoffrion-Dyer-Feinberg (GDF) Procedure
 13.2.1 A Steepest Ascent Algorithm
 13.2.2 Frank-Wolfe Algorithm
 13.2.3 Routine for Inducing Locally Relevant Weights
 13.2.4 GDF Algorithm
 13.2.5 GDF Sample Output
 13.2.6 GDF Numerical Example
 13.2.7 GDF Comments

13.3 Zionts-Wallenius (Z-W) Method
 13.3.1 Z-W Algorithm
 13.3.2 Z-W Numerical Example
 13.3.3 Determining Nonbasic Variables Efficient w.r.t. $\Lambda^{(k)}$
 13.3.4 Z-W Comments

13.4 Interval Criterion Weights/Vector-Maximum Approach
 13.4.1 Interval Criterion Weights Algorithm
 13.4.2 Interval Criterion Weights Comments

13.5 Interactive Weighted-Sums/Filtering Approach
 13.5.1 Calibration
 13.5.2 Interactive Weighted-Sums Algorithm
 13.5.3 Interactive Weighted-Sums Comments

13.6 Visual Interactive Approach of Korhonen and Laakso
 13.6.1 Achievement Scalarizing Functions
 13.6.2 Projecting a Line Segment onto N
 13.6.3 Visual Interactive Algorithm
 13.6.4 Visual Interactive Comments

14. INTERACTIVE WEIGHTED TCHEBYCHEFF PROCEDURE

14.1 The z^* Ideal Criterion Vector
14.2 Selecting ϵ_i Values
14.3 Augmented Weighted Tchebycheff Metrics
 14.3.1 Contours
 14.3.2 Weighted and Augmented Weighted Tchebycheff Programs
CONTENTS

14.3.3 Definition Points, Vertices, and Diagonals 425
14.3.4 Points of Intersection with Z 427
14.4 Selecting ρ Values 429
14.5 Diagonal Direction of a Tchebycheff Metric 430
14.6 Unsupported Nondominated Criterion Vectors 431
 14.6.1 Weighted-Sums Approaches and Unsupportedness 432
 14.6.2 Weighted-Sums Approaches and Supported Criterion Vectors 433
 14.6.3 Subproblem Test for Unsupportedness 434
 14.6.4 Domination Sets and Unsupportedness 435
14.7 Improperly Nondominated Criterion Vectors 437
14.8 Tchebycheff Theory 440
 14.8.1 Theory for the Finite-Discrete Case 440
 14.8.2 Theory for the Polyhedral Case 443
 14.8.3 Theory for the Nonlinear and Infinite-Discrete Case 444
14.9 Tchebycheff Algorithm 446

15. TCHEBYCHEFF / WEIGHTED-SUMS IMPLEMENTATION 456

 15.1 Program Formulations 456
 15.2 MPSX Layout Matrix 459
 15.3 SAVE / REVISE / RESTORE Sequence 459
 15.4 Computing the z^* Vector 459
 15.5 Repetitive Optimization Economies 460
 15.6 Illustrative MOLP 461
 15.7 Structure of Automated Package
 15.7.1 Mxxxx Deck 462
 15.7.2 Pxxxx Deck 464
 15.7.3 Lxxxxh Deck 467
 15.7.4 Oxxxxh File 468
 15.8 Numerical Solution of the Illustrative MOLP 468
 15.9 Some Final Tchebycheff Graphical Examples 472
 15.10 Some Final Implementation Comments
 15.10.1 Software Other Than MPSX 475
 15.10.2 Criterion Value Ranges over the Efficient Set 475
 15.10.3 Number of Solutions Presented at Each Iteration 476
 15.10.4 Most Preferred Criterion Vector as Filtering Seed Point 476
 15.10.5 Insertion of Criterion Value Lower Bounds 476
 15.10.6 Selection of ε_i Values in Integer and Nonlinear Cases 477
16. APPLICATIONS 484

16.1 Sausage Blending 484
 16.1.1 A Frankfurter Blending Problem 485
 16.1.2 Vector-Maximum/Filtering Solution Procedure 486
 16.1.3 Frankfurter Blending Formulation 487
 16.1.4 Computer Results 489

16.2 CPA Firm Audit Staff Allocation 493
 16.2.1 Description of Audit Staff Problem 493
 16.2.2 Audit Staff Formulation 494
 16.2.3 Interval Criterion Weights/Weighted-Sums/Filtering Solution Procedure 497
 16.2.4 Computer Solution 498
 16.2.5 Unscaling the Final Weighting Vector 503

16.3 Managerial Compensation Planning 504
 16.3.1 Current Practice 504
 16.3.2 Goal Programming/Tchebycheff Solution Procedure 505
 16.3.3 Managerial Compensation Formulation 506
 16.3.4 Computer Results 509

16.4 Two Additional Applications 513
 16.4.1 River Basin Water Quality Planning 513
 16.4.2 A Markov Reservoir Release Policy Problem 515

17. FUTURE DIRECTIONS 519

17.1 Computer/User Interface 519
17.2 Various Screen Displays 520
17.3 Trajectory Optimization 522
17.4 Multiple Objective Applications in Engineering Management 525
17.5 Other Areas of Research in Multiple Criteria Optimization 526
 17.5.1 Bibliography on Bicriterion Mathematical Programming 527
 17.5.2 Bibliography on Duality in Multiple Objective Programming 527
 17.5.3 Bibliography on Multiple Objective Programming with Fuzzy Sets 528
 17.5.4 Bibliography on Multiple Objectives in Game Theory 529
 17.5.5 Bibliography on Multiple Objective Integer Programming 529
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5.6</td>
<td>Bibliography on Multiple Objectives in Networks, Markov Processes, Dynamic Programming, and Location</td>
<td>530</td>
</tr>
<tr>
<td>17.5.7</td>
<td>Bibliography on Multiple Objectives in Statistics</td>
<td>531</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX</td>
<td>533</td>
</tr>
</tbody>
</table>