Finite Element Implementation

Y. K. Cheung
S. H. Lo
A. Y. T. Leung

The University of Hong Kong
Contents

Preface xi
FACILE program disks xiii
Notation xv

PART I

1 Introduction 1
1.1 The finite element method 1
1.2 Brief historical background 2
1.3 Scope of applications and important characteristics 2
1.4 Finite element procedure 4
1.5 Finite element discretization 4
1.6 Displacement functions 6
1.7 A simple example 8
1.8 Energy approach 10
1.9 A brief review of the chapters 12
1.10 Indicial notation 13
1.11 References to Chapter 1 18

2 Two-dimensional and Axisymmetric Problems 21
2.1 Introduction 21
2.2 Plane stress and plane strain 22
2.2.1 Linear elasticity 22
2.2.2 Element stiffness matrix and element force vectors 23
2.2.3 6-node isoparametric triangular element T6 26
2.2.4 6-node subparametric triangular element 27
2.2.5 8-node isoparametric quadrilateral element Q8 30
2.2.6 8-node rectangular element 31
2.2.7 Numerical integration for isoparametric T6 and Q8 elements 32
2.2.8 Examples 35
2.3 Axisymmetric stress analysis 40
2.3.1 Transversely isotropic material 40
2.3.2 Element stiffness matrix 42
2.3.3 Element nodal force vectors 43
2.3.4 Evaluation of element stresses 44
2.3.5 Examples 44
2.4 Steady-state field problems (2D)
 2.4.1 Element stiffness matrix and element force vectors
 2.4.2 6-node subparametric triangular element
 2.4.3 8-node subparametric rectangular element
 2.4.4 Numerical integration for T6 and Q8 elements
 2.4.5 Examples

2.5 Infinite domain and infinite element
 2.5.1 Example

2.6 References to Chapter 2

3 Three-dimensional Problems

3.1 Introduction

3.2 Three-dimensional isoparametric elements
 3.2.1 10-node isoparametric tetrahedron element T10
 3.2.2 20-node isoparametric hexahedron element H20
 3.2.3 15-node isoparametric pentahedron element P15

3.3 Numerical integration in three dimensions
 3.3.1 Transformation of differential operator (3D)
 3.3.2 Transformation of integral (3D)
 3.3.3 Numerical integration (3D)
 3.3.4 Surface integral (3D)
 3.3.5 Element nodal forces due to a pressure load

3.4 Steady-state field problems
 3.4.1 The general quasi-harmonic equation
 3.4.2 Weak form of general quasi-harmonic equation
 3.4.3 Galerkin formulation
 3.4.4 Finite element discretization
 3.4.5 Conductivity matrix \(K \)
 3.4.6 Element stiffness matrix and element force vectors
 3.4.7 Examples

3.5 Three-dimensional elasticity problems
 3.5.1 Principle of virtual work
 3.5.2 Galerkin formulation
 3.5.3 Linear elasticity
 3.5.4 Stiffness matrix, displacement vector and force vectors
 3.5.5 Element stiffness matrix and element force vectors
 3.5.6 Isotropic material
 3.5.7 Examples

3.6 References to Chapter 3

4 Plate and Shell Elements

4.1 Introduction to plate elements

4.2 Reissner–Mindlin plate element
 4.2.1 Theory
 4.2.2 Strain–displacement relationship
 4.2.3 Constitutive equation
 4.2.4 Virtual work equation
 4.2.5 Finite element stiffness matrix and load vector
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.6</td>
<td>Isotropic plate</td>
<td>97</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Convergence criterion for Reissner–Mindlin plate element</td>
<td>98</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Boundary conditions</td>
<td>98</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Shear locking</td>
<td>99</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Uniform/selective reduced integration</td>
<td>100</td>
</tr>
<tr>
<td>4.2.11</td>
<td>Equivalence of reduced integration and mixed formulation</td>
<td>101</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Rank deficiency</td>
<td>101</td>
</tr>
<tr>
<td>4.3</td>
<td>Simple plate bending elements with straight edges</td>
<td>101</td>
</tr>
<tr>
<td>4.3.1</td>
<td>A correct rank 4-node quadrilateral element, Q_1</td>
<td>101</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The linear triangular element, T_1</td>
<td>103</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The discrete Kirchhoff approach</td>
<td>103</td>
</tr>
<tr>
<td>4.4</td>
<td>Some discussion on plate bending elements</td>
<td>105</td>
</tr>
<tr>
<td>4.5</td>
<td>Plate bending element L9P</td>
<td>106</td>
</tr>
<tr>
<td>4.6</td>
<td>Introduction to shell elements</td>
<td>109</td>
</tr>
<tr>
<td>4.7</td>
<td>A degenerated shell element</td>
<td>109</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Geometrical definition of the element</td>
<td>109</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Laminar coordinate system</td>
<td>110</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Fibre coordinate system</td>
<td>111</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Displacement field</td>
<td>112</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Constitutive equation</td>
<td>112</td>
</tr>
<tr>
<td>4.7.6</td>
<td>Strain–displacement relationship</td>
<td>114</td>
</tr>
<tr>
<td>4.7.7</td>
<td>Element stiffness matrix</td>
<td>115</td>
</tr>
<tr>
<td>4.7.8</td>
<td>Element force vectors</td>
<td>116</td>
</tr>
<tr>
<td>4.7.9</td>
<td>Fibre numerical integration</td>
<td>118</td>
</tr>
<tr>
<td>4.7.10</td>
<td>Stress resultants</td>
<td>118</td>
</tr>
<tr>
<td>4.7.11</td>
<td>Curved shell elements</td>
<td>119</td>
</tr>
<tr>
<td>4.8</td>
<td>A shell as an assembly of flat elements</td>
<td>120</td>
</tr>
<tr>
<td>4.9</td>
<td>Degenerated shell element L9S</td>
<td>122</td>
</tr>
<tr>
<td>4.10</td>
<td>References to Chapter 4</td>
<td>123</td>
</tr>
</tbody>
</table>

PART II

5 Substructures, Symmetry and Periodicity 129

5.1 Introduction 129
5.2 Substructuring 129
5.3 Symmetry 133
5.4 Periodic structures 142
5.4.1 Periodic boundary conditions 142
5.4.2 General boundary conditions 143
5.4.3 Solution procedure 148
5.4.4 Application to method of substructuring 150
5.5 Numerical examples 152
5.6 References to Chapter 5 155

6 The Two Level Finite Element Method 157

6.1 Introduction 157
6.2 Building frames 159
Contents

6.2.1 Local distribution factors 163
6.2.2 Global distribution factors 164
6.2.3 Mixing factors 166
6.2.4 Computational aspects 166
6.2.5 Numerical examples 166

6.3 Plate subject to concentrated loads 167
6.3.1 Formulation 171
6.3.2 Global interpolating functions 172
6.3.3 Transformation 173
6.3.4 Stress evaluation 175
6.3.5 Numerical examples 175

6.4 2D crack problems 181
6.4.1 Formulation 181
6.4.2 Global interpolating functions 182
6.4.3 Transformation 184
6.4.4 Evaluation of stress intensity factor 184
6.4.5 Numerical examples 184

6.5 Laminated thick rectangular plates 189
6.5.1 Global functions 193
6.5.2 Numerical examples: static analysis 193
6.5.3 Numerical examples: vibration and buckling analysis 193
6.5.4 Conclusions 193

6.6 References to Chapter 6 194

7 Finite Element Mesh Generation 196

7.1 Introduction 196

7.2 Mesh generation on planar domains 200
7.2.1 Introduction 200
7.2.2 Coordinate transformation 200
7.2.3 Automatic mesh generation for arbitrary planar domains 200
7.2.4 Generation of quadrilateral elements 22

7.3 Mesh generation over curved surfaces 23
7.3.1 Introduction 23
7.3.2 Transformation of developable surfaces 23
7.3.3 Surface of revolution 23
7.3.4 Spherical surface 23
7.3.5 Arbitrary surfaces 23
7.3.6 Triangulation of arbitrary curved surfaces 23
7.3.7 Examples 23
7.3.8 Discussions on mesh generation over surfaces 24

7.4 Mesh generation for volumes (3D) 24
7.4.1 Introduction 24
7.4.2 The existing methods 24
7.4.3 3D Delaunay triangulation 24
7.4.4 3D triangulation based on the advancing front technique 24

7.5 References to Chapter 7 25
PART III

8 Implementation 265

8.1 Introduction 265
8.2 Optimization of matrix profile 267
 8.2.1 Introduction 267
 8.2.2 Node renumbering program RENUM 268
 8.2.3 Example 270
8.3 Solution of a system of linear equations 276
 8.3.1 Introduction 276
 8.3.2 Matrix decomposition 277
 8.3.3 Skyline storage scheme and column reduction 280
 8.3.4 Using out-of-core memory 282
 8.3.5 Program for matrix decomposition and solution of unknowns 284
8.4 Assembly of system stiffness matrix 287
 8.4.1 Procedure of the assembly process 288
 8.4.2 An example of the assembly process 288
 8.4.3 Matrix assembly involving out-of-core storage 290
8.5 Boundary and loading conditions 292
 8.5.1 Introduction of displacement boundary conditions 292
 8.5.2 Example: Imposing boundary conditions by different methods 293
 8.5.3 Transformation of variables 294
 8.5.4 Example: Rotation of a reference system at a node 294
 8.5.5 Linear constraints between variables 295
 8.5.6 Example: Linear constraints between variables 296
 8.5.7 Introduction of specified values to variables 296
 8.5.8 Forming the system right-hand side force vector 296
8.6 Finite element program FACILE 297
 8.6.1 Introduction 297
 8.6.2 Types of problems and finite elements supported by FACILE 298
 8.6.3 Program structure of FACILE 298
 8.6.4 Variables used in FACILE 301
 8.6.5 Input data for program FACILE 304
 8.6.6 Sample runs 307
 8.6.7 Program listing 318
8.7 References to Chapter 8 358

Index 359