CONTENTS

Preface, vii
List of Reference Tables, xxv
Glossary of Symbols and Abbreviations, xxvi

PART 1 FOUNDATIONS OF NONLINEAR NETWORK THEORY

1 TWO-TERMINAL NETWORK ELEMENTS, 3
 1-1 Review of Basic Physical Variables in Network Theory, 3
 1-2 The Simultaneity Postulate in Lumped-network Theory, 5
 1-3 Significance of the Reference Current Direction and the Reference Voltage Polarity, 7
 1-4 Independent Sources, 9
 1-5 Characterization of a Two-terminal Black Box, 11
 1-5-1 A Mechanical Black-box Analogy, 12
 1-5-2 Static Characteristics of a Two-terminal Black Box, 15
 1-6 Two-terminal Resistors, 17
 1-6-1 Linear Resistors, 17
 1-6-2 Nonlinear Resistors, 18
 1-6-3 Classification of v-i Curves, 19
 1-6-4 v-i Curves of DC Sources and Ideal Diodes, 23
 1-6-5 Some Practical Applications of Two-terminal Nonlinear Resistors, 24
 1-7 Two-terminal Capacitors, 30
 1-7-1 Linear Capacitors, 30
 1-7-2 Nonlinear Capacitors, 31
 1-7-3 Some Practical Applications of Two-terminal Nonlinear Capacitors, 32
 1-8 Two-terminal Inductors, 35
 1-8-1 Linear Inductors, 35
 1-8-2 Nonlinear Inductors, 36
 1-8-3 Some Practical Applications of Two-terminal Nonlinear Inductors, 37
 1-9 Energy and Power, 38
 1-10 Time-varying Elements, 47
Contents

1-11 Concepts of Modeling, 51
1-12 Summary, 53

2 CONTROLLED ELEMENTS, 62
2-1 Two-terminal Controlled Elements, 62
 2-1-1 Two-terminal Controlled Resistors, 62
 2-1-2 Two-terminal Controlled Capacitors, 67
 2-1-3 Two-terminal Controlled Inductors, 67
2-2 Practical Applications of Controlled Elements, 68
2-3 Controlled Sources, 70
 2-3-1 Transducers, 71
 2-3-2 Sources Controlled by Electrical Variables, 72
2-4 A Basic Composition Technique, 75
2-5 Summary, 78

3 MULTITERMINAL ELEMENTS, 84
3-1 Characterization of a Multiterminal Black Box, 84
3-2 Three-terminal Resistors, 86
 3-2-1 Forms of Representation, 89
 3-2-2 Graphical Transformation of Representations, 95
 3-2-3 Transformation to Another Common Terminal, 97
 3-2-4 Some Practical Three-terminal Resistors, 98
3-3 Three-terminal Capacitors, 103
3-4 Three-terminal Inductors, 104
3-5 Multiterminal Elements, 106
 3-5-1 Multiterminal Resistors Operating as Three-terminal
 Controlled Resistors, 107
 3-5-2 Multiterminal Elements with Prescribed
 Constraints, 108
3-6 Some Practical Applications of Operational Amplifiers, 115
 3-6-1 Operational Amplifier Used as a Nonlinear
 Element, 115
 3-6-2 Operational Amplifier Used as a Linear Element, 117
3-7 Scalars, Rotators, and Reflectors: A Class of Useful
 Two-port Resistors, 128
 3-7-1 Scalars, 130
 3-7-2 Rotators, 131
 3-7-3 Reflectors, 134
3-8 Mutator: The Chameleon Black Box, 138
 3-8-1 R-L Mutators, 138
 3-8-2 R-C Mutators, 140
 3-8-3 C-L Mutators, 142
3-9 Summary, 144

✓ 4 EQUATIONS OF MOTION, 152
4-1 Classification of Nonlinear Networks, 152
4-2 Laws of Elements and Laws of Interconnection, 153
 4-2-1 Equations of Motion Pertaining to the Laws of
 Elements, 155
 4-2-2 Equations of Motion Pertaining to the Laws of
 Interconnection, 155
4-3 Introduction to Network Topology, 157
 4-3-1 Criteria for Writing Independent KVL Equations, 160
 4-3-2 Criteria for Writing Independent KCL Equations, 163
4-4 Equations of Motion for Resistive Networks, 166
 4-4-1 Networks Containing Only Two-terminal Resistors
 and Independent Sources, 166
 4-4-2 Networks Containing Multiterminal Resistors and
 Controlled Sources, 173
4-5 Practical Methods for Solving Nonlinear Functional
 Equations, 179
 4-5-1 The Fixed-point Concept, 180
 4-5-2 The Newton-Raphson Method, 185
 4-5-3 Equations with Many Unknowns, 187
4-6 Equations of Motion for Dynamic Networks, 188
 4-6-1 Selection of State Variables of Normal-form
 Equations, 192
 4-6-2 Autonomous and Nonautonomous Networks, 195
4-7 Practical Methods for Solving Nonlinear Differential
 Equations, 196
 4-7-1 Euler Algorithm for One Differential Equation, 196
 4-7-2 Euler Algorithm for Two or More Differential
 Equations, 199
4-8 Principles of Duality, 201
 4-8-1 Duality Relationships from the Laws of Elements, 203
 4-8-2 Duality Relationships from the Laws of
 Interconnection, 204
 4-8-3 Algorithm for Drawing the Dual of a Planar
 Network, 209
4-9 Summary, 213

PART 2 RESISTIVE NONLINEAR NETWORKS

5 THREE BASIC CONCEPTS OF RESISTIVE NONLINEAR
 NETWORKS, 225
 5-1 The Operating-point Concept, 225
 5-2 Concepts of Driving-point and Transfer-characteristic
 Plots, 228
 5-2-1 The Driving-point Characteristic Plot (DP Plot), 231
 5-2-2 The Transfer-characteristic Plot (TC Plot), 232
 5-3 Some Practical Examples, 236
 5-3-1 Isolation Block for Integrated Circuits, 236
 5-3-2 A Square-law Transfer-characteristic Plot, 238
 5-4 The Power-Transfer Plot, 241
 5-5 The Operating-point Paradox, 243
 5-6 The Three Fundamental Theorems of Resistive Networks, 244
 5-7 Summary, 246

6 GRAPHICAL ANALYSIS OF RESISTIVE NONLINEAR
 NETWORKS, 253
 6-1 A Bird's-eye View, 253
 6-2 Graphical Determination of the Operating Point, 254
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-2-1</td>
<td>Basic Network Configuration 1, Interconnection between 2 Two-terminal Resistors</td>
<td>255</td>
</tr>
<tr>
<td>6-2-2</td>
<td>Basic Network Configuration 2, Interconnection between 2 Two-terminal Resistors and a Three-terminal Resistor</td>
<td>260</td>
</tr>
<tr>
<td>6-3</td>
<td>Graphical Determination of DP Plots of Series-Parallel Networks</td>
<td>266</td>
</tr>
<tr>
<td>6-3-1</td>
<td>The Series-combination Technique</td>
<td>267</td>
</tr>
<tr>
<td>6-3-2</td>
<td>The Parallel-combination Technique</td>
<td>271</td>
</tr>
<tr>
<td>6-3-3</td>
<td>Combination of Series-parallel Techniques</td>
<td>272</td>
</tr>
<tr>
<td>6-4</td>
<td>Some Practical Applications of DP Plot and Operating-point Concepts</td>
<td>273</td>
</tr>
<tr>
<td>6-4-1</td>
<td>Concave and Convex Resistors</td>
<td>273</td>
</tr>
<tr>
<td>6-4-2</td>
<td>Elements with a Horizontal Segment</td>
<td>276</td>
</tr>
<tr>
<td>6-4-3</td>
<td>Elements with a Vertical Segment</td>
<td>277</td>
</tr>
<tr>
<td>6-4-4</td>
<td>Multithreshold Elements</td>
<td>277</td>
</tr>
<tr>
<td>6-4-5</td>
<td>Automatic Sorting Circuit</td>
<td>280</td>
</tr>
<tr>
<td>6-4-6</td>
<td>Automatic Comparison and Null-detection Circuit</td>
<td>282</td>
</tr>
<tr>
<td>6-5</td>
<td>Graphical Determination of TC Plots of Series-parallel Networks</td>
<td>286</td>
</tr>
<tr>
<td>6-5-1</td>
<td>Nonlinear Voltage Divider</td>
<td>286</td>
</tr>
<tr>
<td>6-5-2</td>
<td>Nonlinear Current Divider</td>
<td>290</td>
</tr>
<tr>
<td>6-5-3</td>
<td>Series-parallel Nonlinear Networks</td>
<td>290</td>
</tr>
<tr>
<td>6-6</td>
<td>Some Practical Applications of TC Plots</td>
<td>294</td>
</tr>
<tr>
<td>6-6-1</td>
<td>Half-wave Rectifier</td>
<td>294</td>
</tr>
<tr>
<td>6-6-2</td>
<td>Voltage Limiter</td>
<td>296</td>
</tr>
<tr>
<td>6-6-3</td>
<td>Pulse Compressor</td>
<td>297</td>
</tr>
<tr>
<td>6-6-4</td>
<td>Vertical-pulse Generator</td>
<td>298</td>
</tr>
<tr>
<td>6-7</td>
<td>DP Plot and TC Plot of Networks Containing Three-terminal Resistors</td>
<td>301</td>
</tr>
<tr>
<td>6-7-1</td>
<td>The Template–Double Load-line Method</td>
<td>303</td>
</tr>
<tr>
<td>6-7-2</td>
<td>Some Practical Circuits</td>
<td>306</td>
</tr>
<tr>
<td>6-8</td>
<td>Composite Characteristics of Three-terminal Resistive Black Boxes</td>
<td>311</td>
</tr>
<tr>
<td>6-8-1</td>
<td>Four Basic Three-terminal Black Boxes</td>
<td>311</td>
</tr>
<tr>
<td>6-8-2</td>
<td>Cascade Connection of Basic Three-terminal Black Boxes</td>
<td>313</td>
</tr>
<tr>
<td>6-9</td>
<td>Summary</td>
<td>316</td>
</tr>
</tbody>
</table>

7 PRINCIPLES OF EQUIVALENCE AND SYMMETRY, 325

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>Some Shortcuts in Nonlinear Network Analysis</td>
<td>325</td>
</tr>
<tr>
<td>7-2</td>
<td>Definition of Equivalent Networks</td>
<td>325</td>
</tr>
<tr>
<td>7-3</td>
<td>Equivalence Based on Identical DP Plots</td>
<td>327</td>
</tr>
<tr>
<td>7-4</td>
<td>Equivalence Based on Identical Operating Points</td>
<td>330</td>
</tr>
<tr>
<td>7-5</td>
<td>The Shifting Theorems</td>
<td>332</td>
</tr>
<tr>
<td>7-6</td>
<td>Graphical Analysis of Non-series-parallel Networks</td>
<td>334</td>
</tr>
<tr>
<td>7-7</td>
<td>Principles and Applications of Symmetry</td>
<td>342</td>
</tr>
<tr>
<td>7-7-1</td>
<td>Some Applications of Symmetry to the Operating-point Problem</td>
<td>343</td>
</tr>
<tr>
<td>7-7-2</td>
<td>Some Applications of Symmetry to the Determination of DP Plots and TC Plots</td>
<td>348</td>
</tr>
<tr>
<td>7-8</td>
<td>Complementary Networks</td>
<td>353</td>
</tr>
</tbody>
</table>
8 GRAPHICAL SYNTHESIS OF RESISTIVE NONLINEAR NETWORKS, 368
8-1 What Is Network Synthesis? 368
8-2 Synthesis of Operating Points, 369
 8-2-1 Biasing a Two-terminal Nonlinear Resistor, 369
 8-2-2 Biasing a Three-terminal Nonlinear Resistor, 374
 8-2-3 Sensitivity Consideration in Three-terminal Biasing Circuits, 382
8-3 Synthesis of DP Plots, 386
 8-3-1 Synthesis of Monotonic DP Plots, 388
 8-3-2 Synthesis of Nonmonotonic DP Plots, 396
8-4 Synthesis of TC Plots, 401
 8-4-1 TC Plot Synthesis by a Nonlinear Voltage- or Current-divider Network, 402
 8-4-2 TC Plot Synthesis by Operational Amplifier Circuits, 405
8-5 Synthesis of Jointly Prescribed DP Plot, TC Plot, and Load v-i Curve, 408
8-6 Summary, 413

9 SYNTHESIS OF DC-RESISTIVE NONLINEAR FUNCTIONAL NETWORKS: THE BLACK-BOX APPROACH, 422
9-1 Basic Philosophy, 422
9-2 Functional Black Box for Waveform Generation, 424
 9-2-1 Generation of Periodic Waveforms, 425
 9-2-2 Generation of Aperiodic Waveforms, 426
9-3 Functional Black Box for Waveshaping, 427
 9-3-1 Clipping Networks, 427
 9-3-2 Analog-to-digital Converters, 431
9-4 Functional Black Box for Compensation, 433
9-5 Functional Black Box for Regulation, 437
9-6 Summary, 442

10 SYNTHESIS OF AC-RESISTIVE NONLINEAR FUNCTIONAL NETWORKS: THE BLACK-BOX APPROACH, 449
10-1 Characteristics of Electronically Controlled Switches, 449
10-2 Synthesis of Single-controlled Undirectional Switches, 452
 10-2-1 A High-switching-sensitivity Transistor Switch, 454
 10-2-2 A High-switching-sensitivity SCR Latching Switch, 456
10-3 Synthesis of Single-controlled Bidirectional Switches, 458
10-4 Synthesis of Choppers and Amplitude Modulators, 461
 10-4-1 Practical Choppers, 462
 10-4-2 Practical Amplitude Modulators, 463
Contents

10-5 Synthesis of Multicontrolled Electronic Switches, 465
 10-5-1 Synthesis of a Coincidence Gate, 466
 10-5-2 Synthesis of Matrix Transmission Gates, 468

10-6 Synthesis of Logic Circuit Building Blocks, 469
 10-6-1 Synthesis of AND Gates, 472
 10-6-2 Synthesis of OR Gates, 474
 10-6-3 Synthesis of NAND, NOR, and NOT Gates, 476

10-7 Summary, 479

11 SYNTHESIS OF RESISTIVE NONLINEAR NETWORK MODELS, 489
 11-1 What Is a Network Model? 489
 11-2 Principles of Model Making, 492
 11-3 Synthesis of Global Models for Nonlinear Controlled Resistors, 494
 11-4 Synthesis of Global Models for Nonlinear Three-terminal Resistors, 497
 11-4-1 A Basic T-network Model, 498
 11-4-2 A Basic π-network Model, 501
 11-5 Some Useful Techniques for Modifying Models, 503
 11-5-1 Constraining v-i Curves to Half-planes, 503
 11-5-2 Constraining v-i Curves to Quadrants, 505
 11-5-3 Constraining v-i Curves to the First and Third Quadrants, 506
 11-6 Models of Practical Three-terminal Resistors, 508
 11-6-1 Vacuum Triode Models, 508
 11-6-2 Vacuum Pentode Models, 510
 11-6-3 n-p-n Transistor Models, 512
 11-6-4 p-n-p Transistor Models, 517
 11-6-5 n-channel FET Models, 517
 11-6-6 p-channel FET Models, 517

11-7 Summary, 520

12 ITERATIVE PIECEWISE-LINEAR ANALYSIS AND SYNTHESIS OF RESISTIVE NONLINEAR NETWORKS, 526
 12-1 Basic Philosophy of the Iterative Piecewise-linear Method, 526
 12-2 Determination of Operating Points, 530
 12-3 Determination of DP Plots, 539
 12-4 Determination of TC Plots, 553
 12-5 Computer Analysis of Resistive Nonlinear Networks, 558
 12-5-1 Semiautomatic General Analysis Program, 558
 12-5-2 Completely Automatic Meca Program, 559
 12-6 TC Plot Synthesis by the Piecewise-linear Method, 562
 12-6-1 TC Plot Synthesis by Nonlinear Voltage Dividers, 562
 12-6-2 Jointly Prescribed DP Plot, TC Plot, and Load v-i Curve Synthesis, 565

12-7 Summary, 573
PART 3 DYNAMIC NONLINEAR NETWORKS

13 BASIC CONCEPTS OF DYNAMIC NONLINEAR NETWORKS, 583

13-1 Classification of Dynamic Nonlinear Networks, 583
13-1-1 Basis of Classification, 583
13-1-2 Definition of Order of Complexity, 585
13-2 Order of Complexity of Dynamic Networks, 586
13-2-1 Significance of the Initial Condition, 586
13-2-2 Determination of Order of Complexity by Inspection, 589
13-2-3 Some Subtle Points Concerning Initial Conditions, 592
13-3 Basic Principles for Analyzing Dynamic Networks, 593
13-4 Deriving Normal-form Equations from the Characteristics of the N-port Subnetwork, 595
13-4-1 Normal-form Equations for First-order Networks, 595
13-4-2 Normal-form Equations for Second-order Networks, 599
13-4-3 Normal-form Equations for nth-order Networks, 604
13-5 Trajectory of Solutions in the State Space, 606
13-6 Equilibrium States of Autonomous Networks, 613
13-6-1 Equilibrium States of a Switching Circuit: A Numerical Example, 617
13-6-2 Relationship between Trajectories and Equilibrium States, 620
13-7 Stability of Equilibrium States, 622
13-7-1 Stability Definition for Second-order Networks, 624
13-7-2 Stability Definition for nth-order Networks, 626
13-8 Summary, 626

14 ANALYSIS OF AUTONOMOUS FIRST-ORDER NONLINEAR NETWORKS, 636

14-1 Basic Philosophy and Approach, 636
14-2 Equilibrium States and Stability Criteria, 637
14-3 Stability Criteria for Two Common Circuit Configurations, 640
14-4 Time Scaling the Trajectory of Solutions, 644
14-5 Realistic and Incomplete Models, 649
14-6 Jump Phenomenon and Oscillatory Solution in First-order Networks, 652
14-7 Incomplete Models Requiring Additional Parasitic Elements, 656
14-8 The Piecewise-linear Approach, 659
14-8-1 Networks Containing a Linear Energy-storage Element across a Nonlinear Resistive Network Characterized by Piecewise-linear Segments with Finite Nonzero Slopes, 660
14-8-2 Networks Containing a Linear Energy-storage Element across a Nonlinear Resistive Network Characterized by Piecewise-linear Segments with Arbitrary Slopes, 682

14-8-3 Networks Containing a Piecewise-linear Energy-storage Element across a Nonlinear Resistive Network Characterized by Piecewise-linear Segments with Arbitrary Slopes, 686

14-9 Summary, 689

15 ANALYSIS OF FIRST-ORDER NONLINEAR SWITCHING NETWORKS, 697
15-1 What Is a First-order Switching Network? 697
15-2 Analysis of First-order Linear Switching Networks, 698
15-3 Analysis of First-order Nonlinear Switching Networks, 708
15-4 Analysis of Autonomous First-order Networks Containing One Nonlinear Inductor or Capacitor, 711
15-5 Summary, 718

16 SYNTHESIS OF FIRST-ORDER MULTIVIBRATORS: THE BLACK-BOX APPROACH, 725
16-1 What Is a First-order Multivibrator? 725
16-2 Astable (Free-running) Multivibrators, 726
16-3 Monostable (Single-shot) Multivibrators, 730
 16-3-1 Some Applications of Monostable Multivibrators, 733
 16-3-2 Minimum Triggering-pulse-amplitude Condition, 735
 16-3-3 Minimum Triggering-pulse-width Condition, 736
16-4 Bistable (Double-shot, Flip-flop) Multivibrators, 737
16-5 Summary, 746

17 SYNTHESIS OF FIRST-ORDER TIME-BASE GENERATORS: THE BLACK-BOX APPROACH, 753
17-1 What Is a Time-base Generator? 753
17-2 Synthesis of Free-running Time-base Generators, 759
17-3 Synchronization of Free-running Time-base Generators, 763
17-4 Synthesis of Triggered Time-base Generators, 768
17-5 Summary, 774

18 ANALYSIS OF NONAUTONOMOUS FIRST-ORDER NONLINEAR NETWORKS, 778
18-1 Motivation and Strategies, 778
18-2 Nonautonomous First-order Linear Network Analysis, 779
 18-2-1 Zero-state Response, 779
 18-2-2 Complete Response, 781
 18-2-3 Very Large and Very Small Time-constant Networks, 783
18-3 Nonautonomous First-order Piecewise-linear Network Analysis, 786
A-4 Mathematical Representation of Multivalued Functions, 909
A-5 Parametric Representation of Nonlinear Network Elements, 913

APPENDIX B GRAPHICAL TECHNIQUES FOR BASIC MATHEMATICAL OPERATIONS, 919
B-1 Graphical Addition and Subtraction, 920
B-2 Graphical Multiplication and Division, 920
B-3 Graphical Composition, 921
B-4 Graphical Elimination, 923
B-5 Graphical Differentiation, 924
B-6 Graphical Integration, 926

APPENDIX C SCHEMATIC DIAGRAMS OF SOME BASIC CIRCUITS, 929
C-1 Circuits for Tracing v-i, v-\(\varphi\), and i-\(\varphi\) Curves, 929
C-2 Circuits for Simulating Controlled Sources, 932
C-3 Circuits for Simulating Negative-impedance Converters, 937
C-4 Circuits for Simulating Scalars, 938
C-5 Circuits for Simulating Rotators, 939
C-6 Circuits for Simulating Reflectors, 939
C-7 Circuits for Simulating Mutators, 940

APPENDIX D CHARACTERISTIC CURVES OF TYPICAL DEVICES, 943

APPENDIX E SELECTED LIST OF REFERENCES, 958
E-1 References on Basic Circuit Theory, 958
E-2 References on Basic Electronic Circuits and Devices, 959
E-3 References on Linear Active Networks, 959
E-4 References on Nonlinear Electronic Circuits, 960
E-5 References on Nonlinear Network Elements, 960
E-6 References on Integrated Circuits, 963
E-7 References on Device Modeling, 964
E-8 References on the Formulation of Equations of Motion of Nonlinear Networks, 964
E-9 References on Numerical Techniques, 965
E-10 References on Computer-aided Analysis, 965
E-11 References on General Nonlinear Network Properties and Theorems, 966
E-12 References on Approximation Techniques, 968
E-13 References on Qualitative Methods of Analysis, 968
E-14 References on Analytical Techniques, 969

Index of Theorems, 973
Subject Index, 975