The Principles of Heterocyclic Chemistry

ALAN R. KATRITZKY
M.A., D.PHIL., PH.D., SC.D.
Dean of the School of Chemical Sciences,
University of East Anglia, Norwich, England
and

J. M. LAGOWSKI
B.S., M.S., PH.D.
Research Scientist, Genetics Foundation,
The University of Texas, Austin, Texas, U.S.A.
Contents

Preface vii

1. Introduction 1

1. Use of this Book by the Undergraduate Student 1
3. Relationship of Heterocyclic and Carbocyclic Aromatic Compounds 2
4. Arrangement of the Book 4
5. Conventions 5
6. Nomenclature 6
7. The Literature of Heterocyclic Chemistry 9

2. Six-Membered Rings with One Heteroatom 12

I. NOMENCLATURE AND IMPORTANT COMPOUNDS 12

1. Monocyclic Nitrogen-Containing Compounds 12
 (a) Nomenclature, 12. (b) Occurrence, 12. (c) Uses, 13
2. Benzopyridines 13
3. Monocyclic Oxygen- and Sulphur-Containing Compounds 14
 (a) Nomenclature, 14. (b) Occurrence, 15
4. Monobenzo-Pyrones and -Pyrylium Salts 15
 (a) Nomenclature, 15. (b) Occurrence, 16
5. Dibenzo-Pyrones and -Pyrylium Salts 16

II. RING SYNTHESSES 17

A. General Survey 17

B. Preparation of Monocyclic Compounds (Pyridines, Pyridones, Pyrylium Salts, etc.) 19

1. From Pentane-1,5-diones 19
 (a) General, 19. (b) The Hantzsch Pyridine Synthesis, 20
2. From Pent-2-ene-1,5-diones 20
3. From Pentane-1,3,5-triones 21
4. From Other 1,5-Disubstituted Pentanes 21
5. Methods Involving C-C Bond Formation 22

C. Preparation of 2,3-Benzo Derivatives (Quinolines, Quinolones, Chromans, etc.) 22

1. Ring Closure of o-Substituted Anilines or Phenols 22
 (a) o-Substituted Cinnamoyl Derivatives, 22. (b) Other o-Substituted Benzenes, 23
2. Formation of a C-C Bond by Reaction of a Carbonyl Group or Ethylenic Bond with a Benzene Ring 23
 (a) Quinolones and Benzopyrones, 24. (b) Quinolines, 24. (c) Di­benzo Derivatives, 25
D. Preparation of 3,4-Benzo Derivatives (Isoquinolines, etc.) 26
 (a) Ring Closure of a Disubstituted Benzene, 26. (b) From a β-
 Phenethylamine, 26. (c) From a Benzylamine, 27

III. REACTIONS OF THE AROMATIC NUCLEI 27
A. General Survey of Reactivity 27
 1. Pyridines
 (a) Reactions of Electrophilic Reagents at the Annular Nitrogen
 Atom, 27. (b) Reactions of Electrophilic Reagents at a Ring Carbon,
 28. (c) Reactions of Nucleophilic Reagents at Ring Carbon Atoms,
 28. (d) Free Radical Attack at a Ring Carbon Atom, 29
 2. Pyridinium, Pyrylium, and Thiopyrylium Cations
 (a) Reaction with Electrophilic Reagents, 29. (b) Reactions with
 Nucleophiles at a Ring Carbon, 29. (c) Reaction of Nucleophiles at
 a Hydrogen Atom, 30. (d) Reaction of Nucleophiles at an Annular
 Sulphur Atom, 30
 3. Pyridones, Pyrones, and Thiopyrones
 (a) Electrophilic Reagents: Attack on a Ring Carbon Atom, 31.
 (b) Electrophilic Reagents: Attack on a Carbonyl Oxygen Atom,
 31. (c) Nucleophilic Reagents: Removal of Proton from Ring
 Nitrogen Atom, 31. (d) Nucleophilic Reagents: Attack at a Ring
 Carbon Atom, 31. (e) Free Radical Reactions, 32. (f) α-Pyrones, 32
 4. N-Oxides
 (a) Electrophilic Reagents, 32. (b) Strong Nucleophiles, 33. (c)
 Weaker Nucleophilic Reagents, 33
 5. Effects of Substituents
 (a) Electrophilic Attack at Ring Nitrogen, 33. (b) Electrophilic
 Attack at a Ring Carbon Atom, 33. (c) Nucleophilic Attack at a
 Ring Carbon Atom, 34. (d) Free Radical Attack, 35

B. Electrophilic Attack at the Pyridine Nitrogen Atom 35
 1. Proton Acids
 (a) Salt Formation, 35. (b) Substituent Effects, 35
 2. Metal Ions
 (a) Simple Complexes, 36. (b) Chelate Complexes, 36
 3. Reactive Halides and Related Compounds
 (a) Alkyl Halides, etc., 37. (b) Aryl Halides, 37. (c) Acid Chlorides,
 37
 4. Halogens
 5. Peroxids
 6. Other Lewis Acids

C. Electrophilic Attack at the Ring Carbon Atoms 38
 1. Nitration
 (a) Pyridines, 38. (b) Pyridones, 39. (c) Pyridine 1-oxides, 39
 2. Sulphonation
 3. Halogenation
 4. Nitrosation, Diazoe-Coupling, and Reaction with Aldehydes
 5. Oxidation
 6. Acid-Catalyzed Hydrogen Exchange

D. Nucleophilic Attack at the Ring Carbon Atoms 41
 1. Hydroxide Ion
 (a) Pyridine, 41. (b) Alkyl-Pyridinium Ions, 41. (c) Other Pyridinium
 Ions, 42. (d) Pyrylium Salts, 42. (e) Pyrones, 43
Contents

2. Amines and Amide Ions
 (a) Pyridines, 43. (b) Pyridinium Ions, 44. (c) Pyrylium Ions, 44

3. Sulphide Ions

4. Chloride Ions

5. Carbanions
 (a) Organometallic Compounds, 45. (b) Activated Methyl and Methylene Carbanions, 46. (c) Cyanide Ions, 46

6. Chemical Reduction

E. Free Radical Attack at the Ring Carbon Atoms
 1. Halogen Atoms
 2. Aryl Radicals
 3. Dimerization Reactions

F. Miscellaneous Reactions
 1. Loss of a Proton from the Ring Nitrogen Atom
 2. Catalytic Hydrogenation
 3. Other Reactions

IV. THE REACTIONS OF SUBSTITUENTS ATTACHED TO AROMATIC RINGS

A. Substituents on Carbon
 1. General Survey
 (a) Substituent Environment, 51. (b) The Carbonyl Analogy, 51.
 (c) The Effect of One Substituent on the Reactivity of Another, 53.
 (d) Reactions of Substituents Not Directly Attached to the Heterocyclic Ring, 53
 2. Benzenoid Rings
 (a) Fused Benzene Rings, 53. (b) Aryl Groups, 55
 3. Alkyl Groups
 (a) Alkyl Groups Attached to Heteroaromatic Systems, 55. (b) α-and γ-Alkylpyridines, 55. (c) Alkyl-Pyridine 1-Oxides and Pyridones, 57.
 (d) Alkyl-Pyridinium and Pyrylium Compounds, 57. (e) Tautomerism of Alkyl-Pyridines, 59
 4. Other Carbon-Containing Functional Groups
 (a) Carboxylic Acids, 59. (b) Aldehydes and Ketones, 60. (c) Vinyl and Ethynyl Groups, 60
 5. Halogen Atoms
 6. Oxygen-Containing Functional Groups
 (a) Alkoxy Groups, 62. (b) Acyloxy Groups, 63. (c) Hydroxyl Groups, 63. (d) Pyridones, Pyrones, and Thiopyrones, 64
 7. Nitrogen-Containing Functional Groups
 (a) Amino-imino Tautomerism, 65. (b) α- and γ-Amino Groups, 65. (c) β-Amino Groups, 67. (d) Other Amino Groups, 67. (e) Nitro Groups, 67
 8. Sulphur-Containing Functional Groups
 (a) Mercapto-Thione Tautomerism, 68. (b) Thiones, 69. (c) Sulphonic Acid Groups, 69

B. Substituents on the Ring Nitrogen Atom
 1. Rearrangement Reactions
 2. Loss of N-Substituents
 3. Proton Loss from N-Substituents
 4. Reactions of N-Substituents with Electrophilic Reagents
Contents

C. Summary of Synthetic Routes to Substituted Pyridines 72
 (a) 2-Position, 73. (b) 4-Position, 73. (c) 3-Position, 74

V. REACTIONS OF NON-AROMATIC COMPOUNDS 74
 A. Dihydro Compounds 74
 (a) Tautomerism, 74. (b) Aromatization, 74. (c) Other Reactions, 75

 B. Tetra- and Hexa-hydro Compounds 75
 (a) Aromatization, 75. (b) Ring Fission, 75. (c) Other Reactions, 76.
 (d) Stereochemistry, 76

3. Six-Membered Rings with Two or More Heteroatoms 77
 I. NOMENCLATURE AND IMPORTANT COMPOUNDS 77
 1. Diazines 77
 (a) Monocyclic Compounds, 77. (b) Benzo-Diazines, 79. (c) Other
 Fused Diazines, 79
 2. Other Compounds 80
 (a) Triazines and Tetrazines, 80. (b) Oxazines and Thiazines, 80

 II. RING SYNTHESSES 81
 A. Heteroatoms in the 1,2-Positions 81
 1. General Survey 81
 2. Methods Using Hydrazine or Hydroxylamine 82
 3. Other Methods 82
 B. Heteroatoms in the 1,3-Positions 82
 1. General Survey 82
 2. Type C-C-C + Z-C-Z 83
 3. Type C-C-C-Z + C-Z 83
 4. Type Z-C-C-C-Z + C 84
 C. Heteroatoms in the 1,4-Positions 84
 1. General Survey 84
 2. Type Z-C-C-Z + C-C 84
 3. Type C-C-Z + C-C-Z 85
 4. Type C-C-Z-C-C + Z 86
 D. Compounds with Three or Four Heteroatoms 86

 III. REACTIONS OF THE AROMATIC RINGS 86
 1. General Survey 86
 2. Electrophilic Attack on the Ring Nitrogen Atoms 87
 3. Electrophilic Attack on the Ring Carbon Atoms 87
 4. Nucleophilic Attack on the Ring Carbon Atoms 88

 IV. REACTIONS OF SUBSTITUENTS ON AROMATIC RINGS 89
 1. General Survey 89
 2. Carbon-Containing Substituents 90
 (a) Fused Benzene Rings, 90. (b) Aryl Groups, 91. (c) Alkyl Groups,
 91. (d) Carboxylic Acids, Aldehydes, and Ketones, 91
 3. Halogen Atoms 91
 4. Oxygen-Containing Functional Groups 92
 (a) Tautomerism, 92. (b) Diazinones, 92. (c) Alkoxy Groups, 93
5. Nitrogen- and Sulphur-Containing Functional Groups
 (a) Amino Groups, 93. (b) Nitro and Nitroso Groups, 93. (c) Sulphur-Containing Groups, 93

V. REACTIONS OF NON-AROMATIC COMPOUNDS 94

1. Reactions Involving 'Reversion to Type' 94
2. Aromatization 94
3. Other Reactions 95

4. Five-Membered Rings with One Heteroatom 96

I. NOMENCLATURE AND IMPORTANT COMPOUNDS 96

1. Aromatic Monocyclic Compounds 96
 (a) Nomenclature, 96. (b) Thiophenes, 96. (c) Furans, 97. (d) Pyrroles, 97
2. Non-Aromatic Monocyclic Compounds 98
 (a) Nomenclature, 98. (b) Reduced Furans, 98. (c) Reduced Pyrroles, 98. (d) Reduced Thiophenes, 99
3. 2,3-Benz0 Derivatives 99
 (a) Nomenclature, 99. (b) Indoles, 99
4. Other Compounds 100
 (a) 3,4-Benzo Derivatives, 100. (b) Dibenzo Derivatives, 101.
 (c) Other Fused Ring Compounds, 101

II. RING SYNTHESSES 101

1. General Survey 101
2. Formation of C-Z Bonds 102
 (a) Saturated Compounds, 102. (b) Rings with One Ethylenic Linkage, 103. (c) Aromatic Compounds, 104
3. Formation of the C3-C4 Bond 104
 (a) The Knorr Pyrrole Synthesis, 104. (b) The Fischer Indole Synthesis, 105. (c) Cyclization of α-Halogeno-Ketones to give Pyrroles, Furans, and Indoles, 105. (d) Other Cyclizations onto a Benzene Ring, 106

III. REACTIONS OF THE AROMATIC NUCLEI 107

A. General Survey of Reactivity 107
 (a) Comparison with Aliphatic Series, 107. (b) Aromaticity, 108

B. Reactions with Electrophilic Reagents 109

1. Ease of Reaction 109
2. Orientation 109
3. Nitration 110
4. Sulphonation 110
5. Halogenation 110
6. Acylation 111
7. Reactions with Aldehydes and Ketones 112
 (a) Formation of Carbinols or Carbonium Ions, 112. (b) Further Reactions of Carbonium Ions, 112. (c) Chloromethylation, 113
 (d) Mannich Reaction, 114
8. Diaz0-Coupling, Nitrosation, and Mercuration 114
9. Reactions with Acids 115
 (a) Cation Function, 115. (b) Ring Opening, 115. (c) Polymerization, 115. (d) Picrates, 115
Contents

10. Oxidation
 (a) Pyrroles and Furans, 116. (b) Indoles, 116. (c) Thiophenes, 116

C. Other Reactions of the Aromatic Nuclei
 1. Reactions Involving Deprotonation of Pyrroles
 (a) Pyrroles as Acids, 117. (b) Pyrrole Grignard Reagents, 117.
 (c) Further Pyrrole Anion Intermediates, 118
 2. Catalytic and Chemical Reductions
 3. Other Reactions with Nucleophilic Reagents
 4. Free Radical Reactions
 5. Diels-Alder Reaction

IV. REACTIONS OF SUBSTITUENTS ON AROMATIC NUCLEI
 1. General Survey of Reactivity
 2. Fused Benzene Rings
 3. Alkyl and Substituted-Alkyl Groups
 (a) Alkyl Groups, 121. (b) Substituted-Alkyl Groups: General, 122.
 (c) Halogenomethyl Groups, 122. (d) Hydroxymethyl Groups, 122.
 (e) Aminomethyl Groups, 123
 4. Carboxylic Acids
 5. Formyl and Acyl Groups
 6. Halogen
 7. Nitro, Sulphonic Acid, and Mercuri Groups
 8. N-Substituents on Pyrroles

V. REACTIONS OF HYDROXYL, AMINO, AND RELATED COMPOUNDS
 1. Survey of Reactivity
 (a) General, 126. (b) Tautomerism of Monocyclic Compounds, 126.
 (c) Tautomerism of Benzo Derivatives, 127. (d) Interconversion and Reactivity of Tautomeric Forms, 127
 2. Reactions with Electrophiles
 (a) Hydroxy Compounds, 129. (b) Anions, 129
 3. Reactions of Carbonyl Compounds with Nucleophiles
 (a) Carbonyl Groups Adjacent to the Heteroatom, 130. (b) Carbonyl Groups Not Adjacent to the Heteroatom, 131
 4. Reduction of Carbonyl and Hydroxyl Compounds
 5. Reactions at Other Sites in the Ring
 6. Amino and Imino Compounds

VI. REACTIONS OF OTHER NON-AROMATIC COMPOUNDS
 1. Pyrrolenines and Indolenines
 2. Thiophene Sulphones
 3. Dihydro Compounds
 4. Tetrahydro Compounds

5. Five-Membered Rings Containing Two or More Heteroatoms

I. NOMENCLATURE AND IMPORTANT COMPOUNDS
 1. Monocyclic Compounds Containing Annular Nitrogen Atoms Only
 2. Monocyclic Compounds Containing Annular Nitrogen and Oxygen or Sulphur Atoms
 3. Polycyclic Derivatives
Contents

II. RING SYNTHESES 139

A. Heteroatoms in the 1,2-Positions 139
 1. Monocyclic Compounds 139
 2. Benzo Derivatives 140

B. Heteroatoms in the 1,3-Positions 141
 1. Oxazoles, Thiazoles, and Imidazoles 141
 2. Other Monocyclic Derivatives 142
 3. Benzo Derivatives 142

C. Compounds Containing Three or More Heteroatoms 143
 1. Heteroatoms in the 1,2,3-Positions 143
 2. Heteroatoms in the 1,2,4-Positions 144
 3. Four or Five Heteroatoms 144

III. REACTIONS OF THE AROMATIC RINGS 144

A. General Survey 144
 1. Comparison with Other Heterocycles 144
 2. Tautomerism 145

B. Electrophilic Attack at a Multiply-Bonded Ring Nitrogen Atom 145
 1. Reaction Sequence 145
 2. Proton Acids 146
 3. Alkyl and Acyl Halides and Related Compounds 147

C. Electrophilic Attack at a Ring Carbon Atom 148
 1. Reactivity and Orientation 148
 (a) Ease of Reaction, 148. (b) Orientation, 148. (c) Effect of Substituents, 149
 2. Nitration, Sulphonation, and Halogenation 149
 3. Other Electrophiles 150

D. Nucleophilic Attack at the Ring Carbon Atoms 151
 (a) General, 151. (b) Hydroxide and Alkoxide Ions, 151. (c) Amines, 152. (d) Reducing Agents, 152. (e) Deprotonation, 152

E. Other Reactions of the Aromatic Nuclei 152
 (a) Nucleophilic Attack on the Ring NH Groups, 152. (b) Loss of Nitrogen, 152

IV. REACTIONS OF SUBSTITUENTS ON AROMATIC NUCLEI 153

1. General Survey 153
 (a) Heteroatoms in the 1,3-Positions, 153. (b) Heteroatoms in the 1,2-Positions, 153

2. Carbon-Containing Substituents 154
 (a) Fused Benzene Rings, 154. (b) Aryl Groups, 154. (c) Alkyl Groups, 154. (d) Acyl Groups, 155

3. Halogens 155

4. Potential Hydroxy Compounds 155
 (a) 2-Hydroxy, Heteroatoms-1,3, 155. (b) 3-Hydroxy, Heteroatoms-1,2, 156. (c) 4- and 5-Hydroxy, Heteroatoms-1,3 and 4-Hydroxy, Heteroatoms-1,2, 156. (d) 5-Hydroxy, Heteroatoms-1,2, 157

5. Amino Groups 157
Contents

V. Reactions of Non-Aromatic Compounds 157
 (a) Dihydro Compounds, 158. (b) Tetrahydro Compounds, 158.
 (c) Non-Aromatic Derivatives of Azolinones, 158

6. Heterocyclic Compounds with Three- and Four-Membered Rings 159

I. Three-Membered Rings 159
 A. Three-Membered Rings with One Heteroatom 159
 1. Nomenclature and Compounds 159
 2. Preparation 159
 3. Reactions 160
 B. Three-Membered Rings Containing Two Heteroatoms 161

II. Four-Membered Rings 162
 A. Four-Membered Rings Containing One Heteroatom 162
 1. Nomenclature and Compounds 162
 2. Preparation 162
 3. Reactions 163
 (a) Saturated Rings, 163. (b) Carbonyl Derivatives, 163
 B. Four-Membered Rings Containing Two Heteroatoms 163

7. Physical Properties 165
 1. Melting Points and Boiling Points 165
 (a) Unsubstituted Compounds, 165. (b) Effect of Substituents, 165
 2. Refractive Indices, Specific Gravities, and Viscosities 167
 3. Dipole Moments 167
 4. pK\text{a} Values 168
 5. Ultraviolet Spectra 169
 6. Infrared Spectra 170
 7. Nuclear Magnetic Resonance Spectra 170
 8. Mass Spectra 171

Index 173