HANDBOOK
OF INORGANIC
ELECTROCHROMIC
MATERIALS

C.G. GRANQVIST

Department of Technology
School of Engineering
University of Uppsala
Uppsala, Sweden

1995
ELSEVIER
Contents

PREFACE vii

1 Introduction 1
1.1 Prototype Device Design and Some Key Concepts 1
1.2 Survey of Electrochromic Oxide Films 5
1.3 Applications Areas for Electrochromic Devices 9
1.4 Some Notes on the History of Electrochromism 13

PART ONE: CASE STUDY ON TUNGSTEN OXIDE 17

2 Bulk Crystalline Tungsten Oxide 19
2.1 Crystal Structures of Tungsten Oxide 19
2.2 Crystal Structures of Tungsten Bronzes and Ion Intercalated Tungsten Oxide 21
2.3 Optical Properties 23
2.4 Electrical Properties 26

3 Tungsten Oxide Films: Preparation, Structure, and Composition of Evaporated Films 29
3.1 Deposition Aspects 29
3.2 Density 31
3.3 Elemental Composition: Oxygen Deficiency and Hydrogen Content 33
3.4 Microstructure Studied by Electron Microscopy 37
3.5 Microstructure Studied by X-ray Extinction 37
3.6 Molecular Bonding Studied by Raman Spectroscopy 39
3.7 Molecular Bonding Studied by Infrared Absorption Spectroscopy 41
3.8 Cluster-type Microstructures 45
3.9 Columnar Microstructures 49
3.10 Crystallization of As-deposited Films 51

4 Tungsten Oxide Films: Preparation, Structure, and Composition of Sputter-Deposited Films 55
4.1 Deposition Aspects 55
4.2 Characterization of As-deposited Films by Several Techniques 57
Contents

4.3 Cluster-type Microstructures 59
4.4 Columnar Microstructures 61
4.5 Crystallization of As-deposited Films 61

5 Tungsten Oxide Films: Preparation, Structure, and Composition of Electrochemically and Chemically Prepared Films 65
5.1 Electrodeposition 65
5.2 Anodization 67
5.3 Chemical Vapor Deposition and Spray Deposition 68
5.4 Sol-gel-based Techniques 71
5.5 Miscellaneous Techniques 77

6 Tungsten Oxide Films: Ion Intercalation/deintercalation Studied by Electrochemical Techniques 79
6.1 Ion Intercalation Reactions and Electrochemical Analysis:
 Some Introductory Remarks 79
6.2 Diffusion Constants 81
6.3 Electromotive Force 87
6.4 Chronoamperometry: Kinetics for Ion Intercalation and Deintercalation 91
6.5 Cyclic Voltammetry 95
6.6 Impedance Spectrometry 103
6.7 Beam Deflectometry 107
6.8 Microbalance Measurements 109

7 Tungsten Oxide Films: Ion Intercalation/deintercalation Studied by Physical Techniques 111
7.1 Depth Profiling of Intercalated Species 111
7.2 Structure Determination by X-ray Extinction and Electron Diffraction 113
7.3 Raman Spectroscopy 117
7.4 Infrared Absorption Spectroscopy 123
7.5 Electron Paramagnetic Resonance 129
7.6 Nuclear Magnetic Resonance 131
7.7 Electron Spectroscopies Applied to Core Levels 131
7.8 Electron Spectroscopies Applied to Valence and Conduction Bands 133

8 Tungsten Oxide Films: Ultraviolet Absorption and Semiconductor Bandgap 139
8.1 Semiconductor Bandgap in As-prepared Films 139
8.2 Bandgap Widening in Disordered Films: Possible Explanations 143
8.3 Urbach Tails 145
8.4 Bandgap Widening upon Ion Intercalation 145
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Tungsten Oxide Films: Optical Properties in the Luminous and Near-Infrared Range</td>
<td></td>
</tr>
<tr>
<td>9.1 Spectral Absorptance of As-prepared Films</td>
<td>147</td>
</tr>
<tr>
<td>9.2 Refractive Index of As-prepared Films</td>
<td>149</td>
</tr>
<tr>
<td>9.3 Coloration Techniques for Disordered Films: The Eightfold Way</td>
<td>153</td>
</tr>
<tr>
<td>9.4 Energy for the Absorption Peak</td>
<td>159</td>
</tr>
<tr>
<td>9.5 Transmittance and Reflectance of Ion Intercalated Films</td>
<td>159</td>
</tr>
<tr>
<td>9.6 Optical Constants of Ion Intercalated Films</td>
<td>165</td>
</tr>
<tr>
<td>9.7 Coloration Efficiency</td>
<td>165</td>
</tr>
<tr>
<td>10 Tungsten Oxide Films: Theoretical Models for the Optical Properties</td>
<td></td>
</tr>
<tr>
<td>10.1 Absorption in Disordered Films: Color Centers</td>
<td>175</td>
</tr>
<tr>
<td>10.2 Absorption in Disordered Films: Small Polarons</td>
<td>176</td>
</tr>
<tr>
<td>10.3 Absorption in Disordered Films: Intervalance Charge Transfer</td>
<td>181</td>
</tr>
<tr>
<td>10.4 Transmittance and Reflectance of Crystalline Films: Drude Theory</td>
<td>181</td>
</tr>
<tr>
<td>10.5 Transmittance and Reflectance of Crystalline Films: Theory for Heavily Doped Semiconductors with Ionized Impurity Scattering</td>
<td>183</td>
</tr>
<tr>
<td>10.6 Optical Properties of Granulär Films: Effective Medium Theories</td>
<td>187</td>
</tr>
<tr>
<td>11 Tungsten Oxide Films: Electrical Properties</td>
<td></td>
</tr>
<tr>
<td>11.1 Electrical dc Conductivity</td>
<td>193</td>
</tr>
<tr>
<td>11.2 Electrical ac Conductivity</td>
<td>197</td>
</tr>
<tr>
<td>11.3 Thermoelectric Effect</td>
<td>199</td>
</tr>
<tr>
<td>11.4 Photoelectric Effects</td>
<td>201</td>
</tr>
<tr>
<td>PART TWO: ELECTROCHROMISM AMONG THE OXIDES</td>
<td></td>
</tr>
<tr>
<td>(EXCEPT TUNGSTEN OXIDE)</td>
<td>207</td>
</tr>
<tr>
<td>12 Molybdenum Oxide Films</td>
<td></td>
</tr>
<tr>
<td>12.1 Crystal Structure of Bulk-like Molybdenum Oxide</td>
<td>209</td>
</tr>
<tr>
<td>12.2 Films Made by Evaporation: Preparation and Characterization</td>
<td>211</td>
</tr>
<tr>
<td>12.3 Films Made by Sputter-deposition: Preparation and Characterization</td>
<td>213</td>
</tr>
<tr>
<td>12.4 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization</td>
<td>213</td>
</tr>
<tr>
<td>12.5 Ion Intercalation/deintercalation Reactions and Diffusion Constants</td>
<td>215</td>
</tr>
<tr>
<td>12.6 Ion Intercalation/deintercalation Studied by Electrochemical Techniques</td>
<td>217</td>
</tr>
<tr>
<td>12.7 Ion Intercalation/deintercalation Studied by Physical Techniques</td>
<td>217</td>
</tr>
<tr>
<td>12.8 Ultraviolet Absorption and Semiconductor Bandgap</td>
<td>219</td>
</tr>
<tr>
<td>12.9 Optical Properties in the Luminous and Near-infrared Range</td>
<td>221</td>
</tr>
<tr>
<td>12.10 Coloration Efficiency</td>
<td>223</td>
</tr>
</tbody>
</table>
13 Miscellaneous Tungsten- and Molybdenum-Oxide-Containing Films
13.1 Binary Oxides, Especially Tungsten-Molybdenum Oxide 225
13.2 Ternary Oxides, Especially Tungsten-Molybdenum-Vanadium Oxide 229
13.3 Tungsten Oxyfluoride 231
13.4 Composites of Tungsten Oxide and Metal 235

14 Iridium Oxide Films 237
14.1 Crystal Structure of Bulk-like Iridium Oxide 237
14.2 Films Made by Evaporation and Sputter-deposition: Preparation and Characterization 238
14.3 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 242
14.4 Ion Intercalation/deintercalation Reactions and Diffusion Constants 244
14.5 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 245
14.6 Ion Intercalation/deintercalation Studied by Physical Techniques 251
14.7 Optical Properties 257
14.8 Coloration Efficiency 263

15 Titanium Oxide Films 265
15.1 Crystal Structure of Bulk-like Titanium Oxide 265
15.2 Films Made by Evaporation and Sputter-deposition: Preparation and Characterization 266
15.3 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 266
15.4 Ion Intercalation/deintercalation Reactions and Diffusion Constants 267
15.5 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 269
15.6 Ion Intercalation/deintercalation Studied by Physical Techniques 269
15.7 Optical Properties 271
15.8 Coloration Efficiency 275

16 Manganese Oxide Films 277
16.1 Crystal Structure of Bulk-like Manganese Oxide 277
16.2 Preparation and Characterization of Thin Films 279
16.3 Ion Intercalation/deintercalation Reactions and Diffusion Constants 279
16.4 Ion Intercalation/deintercalation Studied by Electrochemical and Physical Techniques 281
16.5 Optical Properties 281

17 Vanadium Dioxide Films 285
17.1 Crystal Structure and Electrical Properties of Bulk-like Vanadium Dioxide 285
17.2 Preparation and Characterization of Thin Films 287
Contents

17.3 Ion Intercalation/deintercalation Reactions and Changes in Electrical Conductivity 289
17.4 Optical Properties 291

18 Vanadium Pentoxide Films 295
18.1 Crystal Structure of Bulk-like Vanadium Pentoxide 295
18.2 Films Made by Evaporation: Preparation and Characterization 298
18.3 Films Made by Sputter-deposition: Preparation and Characterization 301
18.4 Films Made by Electrochemical and Chemical Techniques (Especially Sol-gel Deposition): Preparation and Characterization 303
18.5 Ion Intercalation/deintercalation Reactions, Ion Exchange, and Diffusion Constants 309
18.6 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 311
18.7 Ion Intercalation/deintercalation Studied by Physical Techniques 317
18.8 Optical Properties of As-prepared Films 323
18.9 Optical Properties of Ion Intercalated Films, and Coloration Efficiency 329
18.10 Theoretical Models for The Optical Properties 331
18.11 CF-doped Vanadium Pentoxide Films 333

19 Nickel Oxide Films 339
19.1 Crystal Structure of Bulk-like Nickel Oxide, Especially Materials Used as Battery Electrodes 339
19.2 Films Made by Evaporation: Preparation and Characterization 340
19.3 Films Made by Sputter-deposition: Preparation and Characterization 342
19.4 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 345
19.5 Ion Intercalation/deintercalation Reactions and Diffusion Constants 347
19.6 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 349
19.7 Ion Intercalation/deintercalation Studied by Physical Techniques 359
19.8 Ultraviolet Absorption and Semiconductor Bandgap 365
19.9 Optical Properties in the Luminous and Near-infrared Range: Evaporated Films 367
19.10 Optical Properties in the Luminous and Near-infrared Range: Sputter-deposited Films 367
19.11 Optical Properties in the Luminous and Near-infrared Range: Films Made by Electrochemical and Chemical Techniques 371
19.12 Coloration Efficiency 375
19.13 Towards a Theoretical Model for the Optical Properties 375

20 Cobalt Oxide Films 379
20.1 Crystal Structure of Bulk-like Cobalt Oxide 379
20.2 Films Made by Evaporation and Sputter-deposition: Preparation and Characterization 380
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3 Films Made by Electrochemical and Chemical Techniques:</td>
<td>380</td>
</tr>
<tr>
<td>Preparation and Characterization</td>
<td></td>
</tr>
<tr>
<td>20.4 Ion Intercalation/deintercalation Reactions and Diffusion Constants</td>
<td>385</td>
</tr>
<tr>
<td>20.5 Ion Intercalation/deintercalation Studied by Electrochemical</td>
<td>385</td>
</tr>
<tr>
<td>Techniques</td>
<td></td>
</tr>
<tr>
<td>20.6 Ion Intercalation/deintercalation Studied by Physical Techniques</td>
<td>387</td>
</tr>
<tr>
<td>20.7 Optical Properties</td>
<td>387</td>
</tr>
<tr>
<td>20.8 Towards a Theoretical Model for the Optical Properties</td>
<td>389</td>
</tr>
<tr>
<td>21 Niobium Oxide Films</td>
<td>391</td>
</tr>
<tr>
<td>21.1 Crystal Structure of Bulk-like Niobium Oxide</td>
<td>391</td>
</tr>
<tr>
<td>21.2 Films Made by Evaporation and Sputter-deposition:</td>
<td>392</td>
</tr>
<tr>
<td>Preparation and Characterization</td>
<td></td>
</tr>
<tr>
<td>21.3 Films Made by Electrochemical and Chemical Techniques:</td>
<td>392</td>
</tr>
<tr>
<td>Preparation and Characterization</td>
<td></td>
</tr>
<tr>
<td>21.4 Ion Intercalation/deintercalation Reactions and Diffusion Constants</td>
<td>393</td>
</tr>
<tr>
<td>21.5 Ion Intercalation/deintercalation Studied by Electrochemical</td>
<td>395</td>
</tr>
<tr>
<td>Techniques</td>
<td></td>
</tr>
<tr>
<td>21.6 Ion Intercalation/deintercalation Studied by Physical Techniques</td>
<td>395</td>
</tr>
<tr>
<td>21.7 Optical Properties</td>
<td>397</td>
</tr>
<tr>
<td>21.8 Coloration Efficiency</td>
<td>399</td>
</tr>
<tr>
<td>22 Miscellaneous Oxide Films</td>
<td>401</td>
</tr>
<tr>
<td>22.1 Rhenium Oxide</td>
<td>401</td>
</tr>
<tr>
<td>22.2 Rhodium Oxide</td>
<td>401</td>
</tr>
<tr>
<td>22.3 Ruthenium Oxide</td>
<td>403</td>
</tr>
<tr>
<td>22.4 Iron Oxide</td>
<td>404</td>
</tr>
<tr>
<td>22.5 Chromium Oxide</td>
<td>405</td>
</tr>
<tr>
<td>22.6 Tantalum Oxide</td>
<td>408</td>
</tr>
<tr>
<td>22.7 Copper Oxide</td>
<td>409</td>
</tr>
<tr>
<td>22.8 Praseodymium Oxide</td>
<td>411</td>
</tr>
<tr>
<td>22.9 Doped Strontium Titanate</td>
<td>411</td>
</tr>
<tr>
<td>23 Systematics for the Electrochromism in Transition Metal Oxides</td>
<td>413</td>
</tr>
<tr>
<td>23.1 The Ubiquitous MeO$_6$ Octahedron</td>
<td>413</td>
</tr>
<tr>
<td>23.2 Canonical Bandstructure</td>
<td>415</td>
</tr>
<tr>
<td>23.3 A Conceptual Framework for Electrochromism Among the Transition</td>
<td>417</td>
</tr>
<tr>
<td>Metal Oxides</td>
<td></td>
</tr>
<tr>
<td>24 Inorganic Non-oxide Electrochromic Materials</td>
<td>421</td>
</tr>
<tr>
<td>24.1 Tungsten Sulfide</td>
<td>421</td>
</tr>
<tr>
<td>24.2 Heteropolyacids, Especially Phosphotungstic Acid</td>
<td>421</td>
</tr>
<tr>
<td>24.3 Indium Nitride and Tin Nitride</td>
<td>423</td>
</tr>
<tr>
<td>24.4 Graphite</td>
<td>423</td>
</tr>
</tbody>
</table>
Contents

24.5 β-zirconium Nitride Chloride 423
24.6 Prussian Blue: Bulk Structure and Oxidation/reduction Capability 424
24.7 Prussian Blue: Preparation and Characterization of Thin Films 424
24.8 Prussian Blue: Optical Properties 425
24.9 Alternative Hexacyanometallates 427

PART THREE: ELECTROCHROMIC DEVICES 431

25 Transparent Electrical Conductors 433
25.1 Doped Oxide Semiconductor Films 433
25.2 Coinage Metal Films 435

26 Electrolytes and Ion Conductors 441
26.1 Liquid Electrolytes 441
26.2 Inorganic Solid Electrolytes and Ion Conductors: Introductory Remarks 444
26.3 Inorganic Solid Electrolytes and Ion Conductors: Mainly Alkali Ion Conductors 445
26.4 Polymer Electrolytes: Introductory Remarks and Data for Proton Conductors 446
26.5 Polymer Electrolytes: Mainly Lithium Ion Conductors 449

27 Ion Storage Materials: Brief Overview 453
27.1 Materials for Reflecting Display-type Devices 453
27.2 Materials for Transparent Devices 455
27.3 Comments on Ion Storage in Transparent Electrical Conductors 457

28 Devices with Liquid Electrolytes 459
28.1 Display-type Devices with Proton Conducting Electrolytes 459
28.2 Display-type Devices with Lithium Ion Conducting Electrolytes 461
28.3 Transparent Devices with Dispersed Redox Agents, Including Area-related Effects and Durability Issues 463
28.4 Transparent Charge-balanced Devices 465
28.5 Comment on Devices for Variable Thermal Emittance 469

29 Devices with Solid Inorganic Electrolytes and Ion Conductors 473
29.1 Reflecting Devices with Bulk-type Proton Conductors 473
29.2 Reflecting Devices with Bulk-type Sodium Ion Conductors 476
29.3 Devices with Thin Film Proton Conductors Relying on Incorporated Water (Deb Devices) 476
29.4 Charge-balanced Devices with Thin Film Proton Conductors 479
29.5 Devices with Thin Film Alkali Ion Conductors and Silver Ion Conductors 485
29.6 A Photo-electrochromic Thin Film Device 487
Contents

30 Devices with Polymer Electrolytes
- 30.1 Proton Conducting Polymers 489
- 30.2 Lithium Ion Conducting Polymers 494
- 30.3 Sodium and Potassium Conducting Polymers 497

31 Time-Dependent Device Performance: A Unified Treatment
- 31.1 Color/bleach Response Time: Effects of Film Porosity 499
- 31.2 Color/bleach Response Time: Effects of Applied Voltage and Electrolyte Hydration 501
- 31.3 Color/bleach Response Time: Effects of Temperature 503
- 31.4 Color/bleach Response Time: Effects of Geometric Area 507
- 31.5 Non-volatility of the Optical Memory: Open Circuit Performance 507
- 31.6 Non-volatility of the Optical Memory: Effects of Drive Circuitry 509
- 31.7 Durability: Etching of Tungsten Oxide in Acid Electrolytes 509
- 31.8 Durability: Non-reversible Ion Incorporation from the Electrolyte, and Cycling-induced Crystallization of Tungsten Oxide Films 513
- 31.9 Durability: Effects of Ion Incorporation from the Substrate 515
- 31.10 Durability: Comments on Iridium Oxide Films 515

Appendix: Abbreviations, Acronyms, and Symbols 519

References 527

Index 617