Mathematical Theory of Reliability of Time Dependent Systems with Practical Applications

Igor N. Kovalenko
University of North London
and
National Academy of Sciences of the Ukraiina, Kyiv, Ukraiina

Nickolaj Yu. Kuznetsov
V.M. Glushkov Institute of cybernetics, Kyiv, Ukraiina

Philip A. Pegg
University of North London

JOHN WILEY & SONS
Chichester • New York • Weinheim • Brisbane • Singapore • Toronto
Contents

Preface

1 Introduction

1.1 Introductory remarks

1.2 Context

1.3 Basic mathematical concepts of reliability

1.4 Non-repairable systems

1.5 Repairable systems

1.6 Alternative models for the reliability of systems

1.7 Quality control and improvement and reliability

1.8 Statistical inference of reliability parameters

1.9 Monte Carlo methods

1.10 Contents of this book

References

2 Markov and Semi-Markov Models as a Basis for the Mathematical Analysis of System Reliability

2.1 Review of some relevant probability concepts

2.2 Markov processes

2.3 Semi-Markov process (SMP)

2.4 Markov models of systems with discrete events

2.5 Semi-Markov models of systems with discrete events

2.6 Important special cases

References

3 Methods for Investigating Homogeneous and Non-homogeneous Point Processes (Event Flows)

3.1 Point processes

3.2 Ergodicity

3.3 The k-intensity of the point process

3.4 Equilibrium equations

3.5 Application to semi Markov processes

3.6 Further ergodic relations

3.7 Regenerative models for failure flows

3.8 The main reliability parameters via point process parameters

References

4 Fault Trees — the Current State of Research

4.1 Introduction

4.2 Main definitions and notations

4.3 System reliability analysis using fault trees

4.4 Probability evaluation of fault trees

References
CONTENTS

4.5 Fault tree evaluation based on minimal cut sets 84
4.6 Problems arising in cut set evaluation for large fault trees 88
4.7 A multi-level representation of a fault tree containing replicated gates 89
4.8 Description of gate and component types 96
4.9 FAMOCUTN — analytical evaluation of main module cut sets 96
4.10 Examples 103
References 107
Bibliography 109

5 **Theory of Redundant Systems** 111
5.1 Preliminary remarks 111
5.2 Finite variates analysis 112
5.3 Busy period analysis: analytical expressions 113
5.4 Small parameter analysis of busy period variables 118
5.5 Failure probability within a busy period through hyper-Erlangian approximation 125
5.6 Time-varying reliability parameters via busy period parameters 128
References 130
Bibliography 132

6 **Monte Carlo Methods** 133
6.1 Random variable generation 133
6.2 Modelling of a non-homogeneous poisson process 140
6.3 Modelling of a Markov chain in continuous time 141
6.4 Modelling of semi-Markov processes 141
6.5 Accuracy of estimators and the necessary number of realisations 143
6.6 Applications to reliability problems 148
References 152
Bibliography 153

7 **Reliability Analysis using Perturbation Methods** 155
7.1 Introductory remarks 155
7.2 The problem for Markov reliability models 158
7.3 Light traffic limits 160
7.4 Phase-type and matrix-exponential approximations 162
7.5 Infinitesimal perturbation analysis 164
References 167
Bibliography 167

8 **Stiff Processes in Reliability Analysis** 169
8.1 Introduction remarks 169
8.2 Small parameters in differential equations (regular case) 170
8.3 Small parameters in differential equations (singular case) 172
8.4 The saddle point method 174
8.5 Asymptotic aggregation of states of semi-Markov process 176
8.6 Models of processes in different scales 181
8.7 Use of the invariance principle 186
8.8 Some techniques for the introduction of a small parameter into stochastic relations 186
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>190</td>
</tr>
<tr>
<td>Bibliography</td>
<td>190</td>
</tr>
<tr>
<td>9 Variance Reduction Methods</td>
<td>193</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>193</td>
</tr>
<tr>
<td>9.2 Importance sampling</td>
<td>195</td>
</tr>
<tr>
<td>9.3 Stratified sampling</td>
<td>203</td>
</tr>
<tr>
<td>9.4 Control variable sampling</td>
<td>206</td>
</tr>
<tr>
<td>9.5 Method of antithetic variables</td>
<td>209</td>
</tr>
<tr>
<td>9.6 Common random numbers technique</td>
<td>210</td>
</tr>
<tr>
<td>9.7 Analytical–statistical methods</td>
<td>210</td>
</tr>
<tr>
<td>9.8 Some estimates for systems described by regenerative processes</td>
<td>213</td>
</tr>
<tr>
<td>References</td>
<td>215</td>
</tr>
<tr>
<td>Bibliography</td>
<td>218</td>
</tr>
<tr>
<td>10 Analytical–Statistical Methods for Rapid Simulation of Repairable Systems with Structure Redundancy</td>
<td>221</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>221</td>
</tr>
<tr>
<td>10.2 Rapid simulation of m out of n structures</td>
<td>222</td>
</tr>
<tr>
<td>10.3 Bounded coefficient of variation for highly reliable systems</td>
<td>228</td>
</tr>
<tr>
<td>10.4 Examples</td>
<td>232</td>
</tr>
<tr>
<td>10.5 The analytical–statistical method for the evaluation of the reliability of repairable systems</td>
<td>240</td>
</tr>
<tr>
<td>10.6 Evaluation of non-stationary state probabilities of alternating renewal processes</td>
<td>246</td>
</tr>
<tr>
<td>10.7 Analytical–statistical method for the evaluation of the Sojourn time distribution for a Markov process</td>
<td>251</td>
</tr>
<tr>
<td>10.8 Evaluation of the unavailability of repairable systems</td>
<td>254</td>
</tr>
<tr>
<td>References</td>
<td>261</td>
</tr>
<tr>
<td>11 Measures of Reliability Importance of Components</td>
<td>263</td>
</tr>
<tr>
<td>11.1 The purpose of importance measures</td>
<td>263</td>
</tr>
<tr>
<td>11.2 Birnbaum importance of components</td>
<td>264</td>
</tr>
<tr>
<td>11.3 Some generalisations of the Birnbaum measure</td>
<td>268</td>
</tr>
<tr>
<td>11.4 Vesely–Fussell component importance measure</td>
<td>270</td>
</tr>
<tr>
<td>11.5 Barlow–Proschan importance of components</td>
<td>273</td>
</tr>
<tr>
<td>11.6 Natvig importance measures</td>
<td>277</td>
</tr>
<tr>
<td>11.7 Importance of modules and cut sets</td>
<td>281</td>
</tr>
<tr>
<td>11.8 Methods for evaluating reliability importance</td>
<td>285</td>
</tr>
<tr>
<td>11.9 Increase of system reliability by parallel redundancy and component improvement</td>
<td>288</td>
</tr>
<tr>
<td>11.10 Concluding remarks</td>
<td>294</td>
</tr>
<tr>
<td>References</td>
<td>295</td>
</tr>
<tr>
<td>Bibliography</td>
<td>296</td>
</tr>
<tr>
<td>Index</td>
<td>299</td>
</tr>
</tbody>
</table>