Contents

Chapter 1
Electronic Structure of Carotenoids
Bryan E. Kohler
A. Introduction 1
B. Overview of Carotenoid Electronic Structure 2
C. The Electronic Structure of Linear Polyenes 3
 1. Identification of the S_1 and S_2 states 3
 2. Systematics of S_1 and S_2 energies in polyenes and carotenoids 6
 3. Simple model for calculating S_1 and S_2 energies 3
D. Electronic Structure and cis-trans Photoisomerization 8
E. Electronic Structure and UV/Vis Spectra 9
References 12

Chapter 2
UV/Visible Spectroscopy
George Britton
A. Introduction 13
B. Instrumentation 14
 1. Spectrophotometer 14
 2. Cells (cuvettes) 15
C. Origin and Features of the UV/Vis Spectrum of a Carotenoid 15
 1. Electronic transitions 15
 2. The spectrum of a carotenoid 16
 3. Spectral fine structure 16
D. Relationship between Molecular Structure and Spectroscopic Properties 17
 1. General principles 17
 2. The chromophore 18
 3. Geometrical (cis-trans) isomers 20
 4. Cyclic end groups 22
 a) γ Ring, ϵ ring 22
 b) β Ring 23
 c) 3,4-Didehydro-β ring 24
 d) 2-Nor-β ring 25
 e) Aryl ϕ and χ rings 27
 5. Acetylenic groups 27
 6. Allenic groups 27
 7. Retro-carotenoids 31
 8. Carbonyl groups 31
 a) Aldehydes 31
 b) Acyclic ketones 34
 c) Secocarotenoids 36
 d) Cyclic ketones 36
e) Carboxylic acids and esters 39

9. Other functional groups 39
 a) Hydroxy groups 39
 b) Epoxide groups 41

E. Effects of Molecular Environment 43
 1. Effect of different solvents 43
 2. Effect of water 44
 3. Effect of protein 44
 4. Spectra at low temperature 45

F. Tests for Functional Groups on a Spectroscopic Scale 46

G. Tables of Absorption Maxima 46

H. Quantitative Spectrophotometric Analysis 56

References 62

Chapter 3
Circular Dichroism
Richard Buchecker and Klaus Noack 63

A. Introduction 63
 1. Chiroptical methods for the determination of absolute configuration
 of carotenoids 63
 2. Brief historical survey of the application of chiroptical methods
 to carotenoids 63

B. Theory of CD Spectra 65
 1. General aspects 65
 2. Importance of conformation 67
 3. Conclusions: applications of CD to carotenoids 74

C. Experimental Aspects 74

D. Relationships between Structure and CD 76
 1. Monochiral and homodichiral carotenoids 76
 a) Carotenoids with cyclic end groups that cause inherently chiral
 chromophores and conservative CD spectra 76
 i) Substituted \(\beta \) rings 76
 ii) Substituted 4-keto-\(\beta \) rings 80
 iii) 5,6-Epoxy-\(\beta \) end groups 81
 iv) Retro-carotenoids 82
 b) Carotenoids containing chiral cyclic end groups that induce chirality
 and cause non-conservative CD spectra 83
 i) \(\epsilon \) Rings 83
 ii) \(\gamma \) End groups 87
 iii) Saturated cyclic end groups with two or three hydroxy groups 87
 iv) 5,8-Epoxides (furanoids) 88
 v) Allenic end groups 89
 vi) Five-membered rings 90
 vii) 3,6-Epoxides 90
 c) Acyclic carotenoids 91
 i) Acyclic end groups bearing oxygen functions at C-1, or at C-1 and C-2 91
Chapter 4
Infrared Spectroscopy
Kurt Bernhard and Mireille Grosjean

A. Principles, Scope and Limitations

B. Practical Aspects
1. Instrumentation
2. Infrared Spectrophotometers
3. Sampling
 a) Solutions
 b) Mulls
 c) KBr discs

C. Interpretation of IR Spectra
1. General features
2. Infrared spectra of selected carotenoids
 a) Alkanes (perhydrocarotenes)
 b) Alkenes
 c) Geometrical isomers
 d) Alkynes, allenes and arenes.
 e) Alcohols and ethers
 f) Aldehydes and ketones
 g) Esters and carboxylic acids
 h) Sulphates

References

Chapter 5
Resonance Raman Spectroscopy
Yasushi Koyama

A. Introduction
1. Principles of resonance Raman spectroscopy
2. Scope and limitations of resonance Raman spectroscopy

B. Experimental Procedures
1. Instrumentation
2. Sample preparation
3. Raman measurements
 a) Carotenoids free in solution
b) Carotenoids bound in situ

C. Raman Intensities: Dependence of Resonance Raman Intensity
 on Excitation Energy
 1. Resonance Raman excitation profile for all-\(E\)-\(\beta,\beta\)-carotene in solution
 2. Selective detection of resonance Raman scattering from a carotenoid in
 intact cells of a phototrophic bacterium

D. Raman Frequencies: Normal Modes of Vibration
 1. The C=\(C\) stretching frequency that reflects the bond order
 2. Key Raman lines of cis-trans geometrical configurations

E. Applications of Resonance Raman Spectroscopy in the Carotenoid Field

References

Chapter 6
NMR Spectroscopy
Gerhard Englert

A. Introduction

B. Experimental Aspects
 1. Measuring frequency
 2. Sensitivity
 a) Pulsed Fourier-transform (FT) spectroscopy
 b) \(^1\)H-NMR
 c) \(^{13}\)C-NMR
 d) \(^{17}\)O-NMR
 e) Spin-lattice relaxation time \(T_1\)
 i) \(^{13}\)C-NMR
 ii) \(^1\)H-NMR
 f) Spin-spin relaxation time \(T_2\)

C. Chemical Shifts of End Groups
 1. \(^1\)H-NMR
 2. \(^{13}\)C-NMR

D. Chemical Shifts and Spin Couplings of Carotenoids
 1. \(^1\)H-NMR
 2. \(^{13}\)C-NMR

E. Carotenoid Cis-Isomers
 1. \(^1\)H-NMR
 2. \(^{13}\)C-NMR

F. Experimental Techniques
 1. \(^1\)H-NMR
 a) Homonuclear decoupling
 b) Double-INDOR-Difference (DID)
 c) Nuclear Overhauser effect (NOE)
 i) Longitudinal NOE
 ii) Transverse or rotating-frame NOE (ROE)
d) Total correlation spectroscopy (TOCSY, or HOHAHA) 236

e) Homonuclear 1H, 1H-correlated 2D spectroscopy (COSY) 239

i) Regular cross peaks 242

ii) Folded cross peaks 245

2. 13C-NMR 247

a) 1H-decoupled 13C-NMR 247

b) 1H-coupled 13C-NMR 247

c) Distortionless enhancement by polarization transfer (DEPT) 249

d) 1H, 13C-Correlated 2D spectroscopy (hetero-COSY) 251

i) 13C-Detected 1H, 13C-COSY 251

ii) 1H-Detected 1H, 13C-COSY 252

G. Experimental 258

H. Concluding Remarks 259

References 259

Chapter 7
Mass Spectrometry 261

Curt R. Enzell and Susanne Back

A. Introduction 261

B. Ionization Techniques 262

1. Electron impact 262

2. Fast atom bombardment 262

3. Chemical ionization 265

4. Particle desorption 271

C. Tandem Mass Spectrometry 271

1. Linked scanning 271

2. MIKE Scanning 273

D. Combined Chromatography-Mass Spectrometry 274

1. GC-MS and LC-MS 274

2. SFC-MS 274

E. Elimination of In-Chain Units 277

1. Mechanisms for the major reactions 277

2. Intensity ratio of the $[M-92]^+$ and $[M-106]^+$ peaks 280

a) Regular carotenoids 280

b) Acyclic C$_{50}$ carotenoids 283

c) Aromatic carotenoids 283

d) Oxocarotenoids 283

e) Carotenoids substituted at C-20 285

f) Acyclic carotenoids with fewer than 11 conjugated double bonds 285

g) Retro-carotenoids 286

h) Irregular carotenoids 287

3. Other reactions 287

b) 5,6-Epoxides and 5,8-epoxides 288
c) Acyclic 7,8-dihydrocarotenoids and 7,8,11,12-tetrahydrocarotenoids 289
d) Acetylenic carotenoids 291
e) Allenic carotenoids 291

F. Elimination Reactions of Terminal Groups 291
1. Acyclic end groups 302
2. Cyclic end groups 306

G. Carotenoid Conjugates 313
1. Fatty acid and retinoic acid esters 313
2. Sulphates 313
3. Glycosides 314

H. Conclusions 317
References 317

Chapter 8
X-Ray Crystallographic Studies
Fred Mo 321
A. Introduction 321
B. Experimental 321
1. X-ray diffraction and determination of structure 321
2. Determination of absolute configuration 323
C. Studies of Carotenoid Structure 325
1. Structural studies before 1970 325
2. Structural studies after 1970 327
 a) Carotenoids and apocarotenoids 327
 b) The carotenoid chain 331
D. Structures of Degraded Carotenoids, Synthons and Analogues 334
E. Concluding Remarks 338
References 340

Chapter 9
Combined Approach: Identification and Structure Elucidation of Carotenoids
Synnøve Liaen-Jensen 343
A. Introduction 343
B. Polarity: Evidence from Chromatography 343
C. Spectroscopic Data 344
1. Key information provided 344
 a) UV/Vis spectra 344
 b) Mass spectra 345
 c) ¹H-NMR and ¹³C-NMR spectra 345
 d) IR spectra 345
 e) CD spectra 345
D. Chemical Derivatization 346
1. Key information obtained 346
E. Recommended Procedure 347
1. Identification 347
2. Structure elucidation 347

F. Examples of Structure Elucidation 348
1. Decaprenoxyanthin (C_{50}) 348
2. Actinoerythrin (C_{38}) 349
3. Prasinoxanthin (C_{40}) 351
5. Bastaxanthin (carotenoid sulphate) 351
5. P457 (glycoside) 352

References 354

Index 355