SEMICONDUCTOR SENSORS

Edited by

S. M. Sze
UMC Chair Professor
Department of Electronics Engineering and
Microelectronics and Information-Systems Research Center
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.
CONTENTS

Preface

1 Classification and Terminology of Sensors

S. M. Sze

1.1 Semiconductor Sensors 1
1.2 Classification of Semiconductor Sensors 3
1.3 Sensor Characterization 7
1.4 Evolution of Semiconductor Sensors 10
1.5 Organization of the Book 13
 References 15

2 Semiconductor Sensor Technologies

C. H. Mastrangelo and W. C. Tang

2.1 Introduction 17
2.2 Basic Fabrication Processes 20
2.3 Micromechanical Process Design 31
2.4 Bulk Micromachining 42
2.5 Surface Micromachining 55
2.6 Other Micromachining Techniques 75
2.7 Summary and Future Trends 80
 Problems 81
 References 84

3 Acoustic Sensors

M. E. Motamedi and R. M. White

3.1 Introduction 97
3.2 Acoustic Waves 99
3.3 Piezoelectric Materials 104
3.4 Acoustic Sensing 110
3.5 SAW Sensors 117
3.6 Sensor Applications 126
3.7 Summary and Future Trends 143
 Problems 144
 References 146
4 Mechanical Sensors
B. Kloeck and N. F. de Rooij

4.1 Introduction 153
4.2 Piezoresistivity 160
4.3 Piezoresistive Sensors 174
4.4 Capacitive Sensors 185
4.5 Applications 187
4.6 Summary and Future Trends 194
 Problems 197
 References 199

5 Magnetic Sensors
H. Baltes and R. Castagnetti

5.1 Introduction 205
5.2 Effects and Materials 211
5.3 Integrated Hall Sensors 231
5.4 Magnetotransistors 246
5.5 Other Magnetic Sensors 258
5.6 Summary and Future Trends 264
 Problems 265
 References 266

6 Radiation Sensors
S. Audet and J. Steigerwald

6.1 Introduction 271
6.2 Common Physics 273
6.3 HgCdTe Infrared Sensors 298
6.4 Visible-Light Color Sensors 305
6.5 High-Energy Photodiodes 308
6.6 Silicon Drift Chamber X-Ray Sensors 314
6.7 Summary and Future Trends 322
 Problems 324
 References 326

7 Thermal Sensors
S. Van Herwaarden and G. C. M. Meijer

7.1 Introduction 331
7.2 Heat Transfer 332
7.3 Thermal Structures 340
7.4 Thermal-Sensing Elements 350
7.5 Thermal and Temperature Sensors 357
7.6 Summary and Future Trends 373
 Problems 375
 References 380
Chemical Sensors

S. R. Morrison

- 8.1 Introduction 383
- 8.2 Interaction of Gaseous Species at Semiconductor Surfaces 384
- 8.3 Catalysis, the Acceleration of Chemical Reactions 393
- 8.4 The Electrical Properties of Compressed Powders 396
- 8.5 Thin-Film Sensors 397
- 8.6 Thick-Film and Pressed-Pellet Sensors 399
- 8.7 FET Devices for Gas and Ion Sensing 404
- 8.8 Summary and Future Trends 409
 - Problems 409
 - References 410

Biosensors

A. Dewa and W. H. Ko

- 9.1 Introduction 415
- 9.2 Immobilization of Biological Elements 423
- 9.3 Mass Transport in Biosensors 427
- 9.4 Transduction Principles 437
- 9.5 Packaging of Biosensors 455
- 9.6 Summary and Future Trends 463
 - Problems 465
 - References 469

Integrated Sensors

K. Najafi, K. D. Wise, and N. Najafi

- 10.1 Introduction 473
- 10.2 System Organization and Functions 477
- 10.3 Interface Electronics 493
- 10.4 Fabrication Techniques 502
- 10.5 Examples of Integrated Sensors 511
- 10.6 Summary and Future Trends 523
 - Problems 526
 - References 527

Appendices

- Appendix A List of Symbols 531
- Appendix B International System of Units 533
- Appendix C Physical Constants 534
- Appendix D Properties of Si and GaAs in 300K 535

Index 537