<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>0.1.</td>
<td>What the spectrum of a graph is and how it is presented in this book</td>
<td>11</td>
</tr>
<tr>
<td>0.2.</td>
<td>Some more graph theoretic notions and conventions</td>
<td>14</td>
</tr>
<tr>
<td>0.3.</td>
<td>Some theorems from matrix theory and their application to the spectrum of a graph</td>
<td>17</td>
</tr>
<tr>
<td>1.</td>
<td>Basic Properties of the Spectrum of a Graph</td>
<td>23</td>
</tr>
<tr>
<td>1.1.</td>
<td>The adjacency matrix and the (ordinary) spectrum of a graph</td>
<td>23</td>
</tr>
<tr>
<td>1.2.</td>
<td>A general method for defining different kinds of graph spectra</td>
<td>24</td>
</tr>
<tr>
<td>1.3.</td>
<td>Some remarks concerning current spectra</td>
<td>28</td>
</tr>
<tr>
<td>1.4.</td>
<td>The coefficients of $P_G(\lambda)$</td>
<td>31</td>
</tr>
<tr>
<td>1.5.</td>
<td>The coefficients of $C_G(\lambda)$</td>
<td>37</td>
</tr>
<tr>
<td>1.6.</td>
<td>The coefficients of $Q_G(\lambda)$</td>
<td>40</td>
</tr>
<tr>
<td>1.7.</td>
<td>A formula connecting the cyclic structure and the tree structure of a regular or semiregular multigraph</td>
<td>41</td>
</tr>
<tr>
<td>1.8.</td>
<td>On the number of walks</td>
<td>43</td>
</tr>
<tr>
<td>1.9.</td>
<td>Miscellaneous results and problems</td>
<td>47</td>
</tr>
<tr>
<td>2.</td>
<td>Operations on Graphs and the Resulting Spectra</td>
<td>51</td>
</tr>
<tr>
<td>2.1.</td>
<td>The polynomial of a graph</td>
<td>51</td>
</tr>
<tr>
<td>2.2.</td>
<td>The spectrum of the complement, direct sum, and complete product of graphs</td>
<td>54</td>
</tr>
<tr>
<td>2.3.</td>
<td>Reduction procedures for calculating the characteristic polynomial</td>
<td>59</td>
</tr>
<tr>
<td>2.4.</td>
<td>Line graphs and total graphs</td>
<td>61</td>
</tr>
<tr>
<td>2.5.</td>
<td>NEPS and Boolean functions</td>
<td>65</td>
</tr>
<tr>
<td>2.6.</td>
<td>The determination of characteristic polynomials and spectra of graphs of some particular types</td>
<td>72</td>
</tr>
<tr>
<td>2.7.</td>
<td>Miscellaneous results and problems</td>
<td>77</td>
</tr>
<tr>
<td>3.</td>
<td>Relations Between Spectral and Structural Properties of Graphs</td>
<td>80</td>
</tr>
<tr>
<td>3.1.</td>
<td>Digraphs</td>
<td>80</td>
</tr>
<tr>
<td>3.2.</td>
<td>Graphs</td>
<td>84</td>
</tr>
<tr>
<td>3.3.</td>
<td>Regular graphs</td>
<td>94</td>
</tr>
<tr>
<td>3.4.</td>
<td>Some remarks on strongly regular graphs</td>
<td>103</td>
</tr>
<tr>
<td>3.5.</td>
<td>Eigenvectors</td>
<td>104</td>
</tr>
</tbody>
</table>
3.6. Miscellaneous results and problems ... 112

4. The Divisor of a Graph ... 116
4.1. The divisor concept .. 116
4.2. Divisor and cover .. 117
4.3. A generalization of the divisor concept 118
4.4. Symmetry properties and divisors of graphs 118
4.5. The fundamental lemma connecting the divisor and the spectrum ... 121
4.6. The divisor – an effective tool for factoring the characteristic polynomial . 125
4.7. The divisor – a mediator between structure and spectrum 128
4.8. Miscellaneous results and problems ... 131

5. The Spectrum and the Group of Automorphisms 134
5.1. Symmetry and simple eigenvalues ... 134
5.2. The spectrum and representations of the automorphism group 141
5.3. The front divisor induced by a subgroup of the automorphism group 149
5.4. Cospectral graphs with prescribed (distinct) automorphism groups 153
5.5. Miscellaneous results and problems ... 153

6.1. Some families of non-isomorphic cospectral graphs 156
6.2. The characterization of a graph by its spectrum 161
6.3. The characterization and other spectral properties of line graphs 168
6.4. Metrically regular graphs ... 178
6.5. The (−1, 1, 0)-adjacency matrix and Seidel switching 183
6.6. Miscellaneous results and problems ... 185

7. Spectral Techniques in Graph Theory and Combinatorics 189
7.1. The existence and the non-existence of certain combinatorial objects 189
7.2. Strongly regular graphs and distance-transitive graphs 193
7.3. Equiangular lines and two-graphs .. 199
7.4. Connectedness and bipartiteness of certain graph products 203
7.5. Determination of the number of walks 209
7.6. Determination of the number of spanning trees 217
7.7. External problems ... 221
7.8. Miscellaneous results and problems ... 223

8. Applications in Chemistry and Physics .. 228
8.1. Hückel's theory ... 228
8.2. Graphs related to benzenoid hydrocarbons 239
8.3. The dimer problem .. 245
8.4. Vibration of a membrane ... 252
8.5. Miscellaneous results and problems ... 258

9. Some Additional Results ... 260
9.1. Eigenvalues and imbeddings ... 260
9.2. The distance polynomial ... 263
9.3. The algebraic connectivity of a graph ... 265
9.4. Integral graphs ... 266
9.5. Some problems ... 266

Appendix. Tables of Graph Spectra ... 268

Bibliography ... 324

Index of Symbols ... 360

Index of Names ... 361

Subject Index .. 364

Appendix A. Comments on the First Two Editions of the Book 369

Appendix B. Recent Developments in the Theory of Graph Spectra 373

B.1 A survey of relevant books ... 373
B.2 Expository papers ... 376
B.3 Graphs with least eigenvalue −2 ... 378
B.4 Largest eigenvalue ... 381
B.5 Second largest eigenvalue .. 392
B.6 Distance-regular graphs ... 394
B.6.1 Strongly regular graphs .. 395
B.6.2 Other distance-regular graphs ... 396
B.7 Graph angles and star partitions .. 396
B.7.1 Examples and introducing comments 397
B.7.2 Some properties of graph angles .. 399
B.7.3 Main angles .. 402
B.7.4 EA-reconstruction of trees ... 404
B.7.5 Ulam's reconstruction conjecture for graphs 405
B.7.6 Star partitions and canonical star bases 407
B.8 Graph Laplacians ... 409
B.9 Tables of graph spectra ... 411
B.10 The expert system GRAPH and the computer program GRAFFITI ... 413
B.10.1 System GRAPH .. 414
B.10.2 Program GRAFFITI .. 416
B.11 Graph spectra and combinatorial optimization 417
B.12 Miscellaneous results ... 418

Additional Bibliography .. 427