Principles of Data Conversion System Design

Behzad Razavi
AT&T Bell Laboratories
Contents

PREFACE xi

CHAPTER 1 INTRODUCTION TO DATA CONVERSION AND PROCESSING 1

CHAPTER 2 BASIC SAMPLING CIRCUITS 7

2.1 General Considerations 7
2.2 Performance Metrics 11
2.3 Sampling Switches 13
 2.3.1 MOS Switches 14
 2.3.2 Diode Switches 19
 2.3.3 Comparison of MOS and Diode Switches 23
 2.3.4 Improvements in MOS Switch Performance 24
References 27

CHAPTER 3 SAMPLE-AND-HOLD ARCHITECTURES 29

3.1 Conventional Open-Loop Architecture 29
3.2 Conventional Closed-Loop Architecture 31
3.3 Open-Loop Architecture with Miller Capacitance 33
3.4 Multiplexed-Input Architectures 35
3.5 Recycling Architecture 39
3.6 Switched-Capacitor Architecture 40
3.7 Current-Mode Architecture 42
References 43

CHAPTER 4 BASIC PRINCIPLES OF DIGITAL-TO-ANALOG CONVERSION 45

4.1 General Considerations 45
4.2 Performance Metrics 47
4.3 Reference Multiplication and Division 49
 4.3.1 Voltage Division 50
 4.3.2 Current Division 55
 4.3.3 Charge Division 63
4.4 Switching and Logical Functions in DACs 70
 4.4.1 Switching Functions in Resistor-Ladder DACs 70
 4.4.2 Switching Functions in Current-Steering DACs 72
 4.4.3 Switching Functions in Capacitor DACs 74
 4.4.4 Binary-to-Thermometer Code Conversion 76
References 77

CHAPTER 5 DIGITAL-TO-ANALOG CONVERTER ARCHITECTURES 79

5.1 Resistor-Ladder DAC Architectures 79
 5.1.1 Ladder Architecture with Switched Subdivider 79
 5.1.2 Intermeshed Ladder Architectures 82
5.2 Current-Steering Architectures 84
 5.2.1 R-2R-Network Based Architectures 84
 5.2.2 Segmented Architectures 90
References 94

CHAPTER 6 ANALOG-TO-DIGITAL CONVERTER ARCHITECTURES 96

6.1 General Considerations 96
6.2 Performance Metrics 99
6.3 Flash Architectures 101
 6.3.1 Reference Ladder DC and AC Bowing 103
 6.3.2 Nonlinear Input Capacitance 106
CHAPTER 7 BUILDING BLOCKS OF DATA CONVERSION SYSTEMS 153

7.1 Amplifiers 153
7.1.1 Open-Loop Amplifiers 153
7.1.2 Closed-Loop Amplifiers 160
7.1.3 Operational Amplifiers 164
7.1.4 Gain Boosting Techniques 171
7.1.5 Common-Mode Feedback 172

7.2 Comparators 177
7.2.1 Bipolar Comparators 181
7.2.2 CMOS Comparators 188
7.2.3 BiCMOS Comparators 191

References 195

CHAPTER 8 PRECISION TECHNIQUES 198

8.1 Comparator Offset Cancellation 198
8.1.1 Input Offset Storage 199
8.1.2 Output Offset Storage 201
8.1.3 Multistage Offset Storage 202
8.1.4 Comparators Using Offset-Cancelled Latches 206

8.2 Op Amp Offset Cancellation 208
Chapter 8: Calibration Techniques

8.3 Calibration Techniques 211
8.3.1 DAC Calibration Techniques 211
8.3.2 ADC Calibration Techniques 218

8.4 Range Overlap and Digital Correction 224
References 229

Chapter 9: Testing and Characterization

9.1 General Considerations 232
9.2 Sampling Circuits 234
9.3 D/A Converters 239
9.4 A/D Converters 239
 9.4.1 Static Testing 239
 9.4.2 Dynamic Testing 241

Index 252