Contents

1 The handling of time: introduction and survey 1
 1.1 Introduction 1
 1.1.1 Short survey of uses 2
 1.1.2 The declarative view 6
 1.1.3 The procedural and the imperative views 17
 1.1.4 Mathematical studies 19
 1.2 How to present a temporal logic in the predicate calculus 19
 1.3 Semantic presentation of temporal connectives 24
 1.4 Axiomatic presentation of temporal logic 28
 1.5 Algorithmic proof presentation of temporal logic 38
 1.6 Expressive power of temporal connectives 41
 1.7 Fixed point extensions 47
 1.8 H-dimension 51
 1.9 Decidability 53
 1.10 Sample application to computing, 1 55
 1.11 Another application 59

2 Semantical presentation of temporal connectives 67
 2.1 The flow of time 67
 2.2 The assignment to the atoms 73
 2.3 The connectives 76
 2.4 In search of a good temporal logic 81

3 Axiomatic presentation of propositional temporal connectives 91
 3.1 Introduction 91
 3.2 The Hilbert system K_t 92
 3.3 Filtration for K_t 99
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.4</td>
<td>Sahlqvist's correspondence theorem</td>
<td>247</td>
</tr>
<tr>
<td>6.10.5</td>
<td>Examples of correspondence</td>
<td>249</td>
</tr>
<tr>
<td>6.11</td>
<td>Sahlqvist's theorem with irreflexivity rules</td>
<td>251</td>
</tr>
<tr>
<td>6.11.1</td>
<td>A tense language with the (O) connective</td>
<td>253</td>
</tr>
<tr>
<td>6.11.2</td>
<td>A language with complements</td>
<td>254</td>
</tr>
<tr>
<td>7</td>
<td>Basic many-dimensional systems</td>
<td>263</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction and discussion</td>
<td>263</td>
</tr>
<tr>
<td>7.2</td>
<td>The two-dimensional system of Vlach and Åqvist</td>
<td>270</td>
</tr>
<tr>
<td>7.3</td>
<td>A system suggested by the future perfect</td>
<td>276</td>
</tr>
<tr>
<td>7.4</td>
<td>More two-dimensional systems</td>
<td>290</td>
</tr>
<tr>
<td>7.5</td>
<td>The three-dimensional system (F^oP^o)</td>
<td>292</td>
</tr>
<tr>
<td>7.6</td>
<td>Another expressively complete logic</td>
<td>298</td>
</tr>
<tr>
<td>7.7</td>
<td>Logics of historical necessity</td>
<td>299</td>
</tr>
<tr>
<td>8</td>
<td>Propositional quantifiers and fixed point operators</td>
<td>307</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>307</td>
</tr>
<tr>
<td>8.2</td>
<td>Axiomatizing propositional logics</td>
<td>311</td>
</tr>
<tr>
<td>8.3</td>
<td>The strength of propositional quantification</td>
<td>317</td>
</tr>
<tr>
<td>8.4</td>
<td>Fixed point operators</td>
<td>323</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Syntax of (UYF)</td>
<td>324</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Semantics of (UYF)</td>
<td>325</td>
</tr>
<tr>
<td>8.5</td>
<td>Elementary results and recursive systems</td>
<td>328</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Recursive systems</td>
<td>330</td>
</tr>
<tr>
<td>8.6</td>
<td>Elimination of fixed point operators</td>
<td>334</td>
</tr>
<tr>
<td>8.7</td>
<td>Decidability and expressive power</td>
<td>337</td>
</tr>
<tr>
<td>8.8</td>
<td>Eliminating (\varphi) altogether</td>
<td>345</td>
</tr>
<tr>
<td>9</td>
<td>Expressive power of one-dimensional temporal connectives: basic concepts</td>
<td>349</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>349</td>
</tr>
<tr>
<td>9.2</td>
<td>The separation property for linear time</td>
<td>353</td>
</tr>
<tr>
<td>9.3</td>
<td>Separation equals expressive completeness over linear flows</td>
<td>356</td>
</tr>
<tr>
<td>9.4</td>
<td>The generalized separation property</td>
<td>361</td>
</tr>
<tr>
<td>9.5</td>
<td>Separation for general time</td>
<td>365</td>
</tr>
<tr>
<td>10</td>
<td>Expressive completeness of Since and Until over integer and real time</td>
<td>367</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>367</td>
</tr>
<tr>
<td>10.2</td>
<td>Separation for (S, U) over integer time</td>
<td>367</td>
</tr>
<tr>
<td>10.3</td>
<td>Separation for (S, U) over Dedekind complete time</td>
<td>375</td>
</tr>
</tbody>
</table>
10.3.1 Introduction 375
10.3.2 Pre-eliminations 378
10.3.3 Eliminations 382
10.3.4 Induction 386

11 Expressive completeness of Stavi connectives over general linear time 393
11.1 Introduction 393
11.2 Failure of separation 393
11.3 A language L^* for evaluation at gaps 396
11.4 Equivalence of L^* and the Stavi connectives 401
11.5 Separation results 410

12 Further expressive completeness results 415
12.1 Introduction 415
12.2 Gaps in the flow of time 415
12.3 Connectives to talk about gaps 417
12.3.1 Construction of a non-ordinal order definable gap 418
12.4 Expressive power 419
12.5 Other connectives 424
12.6 An axiomatization of U, S, γ_{0}^{\pm} using the irreflexivity rule 425
12.7 Unranked gaps and scattered flows of time 428
12.8 Expressive completeness of U, S and Stavi connectives over linear time 432

13 H-dimension 447
13.1 Introduction 447
13.2 Expressive completeness and finite H-dimension 453
13.3 Expressive completeness in higher dimensions 459
13.4 H-dimension and interpretations 462
13.4.1 Introduction 462
13.4.2 Defining a structure in another 462
13.4.3 Constructions 464
13.4.4 Constructions and H-dimension 467
13.4.5 Constructions and expressive completeness 469
13.5 Covering theorems 472
13.5.1 Canonical structures 475
13.5.2 Canonical structures and H-dimension 486
13.5.3 Connectives for canonical structures 488
13.5.4 The covering theorem 490
13.5.5 The comb 492
13.5.6 Counterexamples 493
13.6 The k-variable property 494
 13.6.1 The k-variable property and H-dimension 495
 13.6.2 Syntactic aspects of the k-variable property 496
 13.6.3 Expressive completeness 497
 13.6.4 First-order definable classes 500
 13.6.5 ω-saturated structures 503
 13.6.6 Back-and-forth systems 505
 13.6.7 Linear orders have the three-variable property 509
 13.6.8 Games and the k-variable property 510
13.7 H-dimension and expressive completeness 515
 13.7.1 Circles 516
 13.7.2 Circles and H-dimension 517
 13.7.3 Circles and expressive completeness 518
 13.7.4 Circle-like flows of time 519

14 Adding a temporal dimension to a logic system 523
 14.1 Introduction 523
 14.2 Temporalizing an existing logic 527
 14.2.1 The logic T 528
 14.2.2 Logic systems and their temporalized form 529
 14.2.3 The correspondence mapping 535
 14.2.4 Completeness of $T(L)$ 536
 14.3 The decidability of $T(L)$ and its complexity 539
 14.4 Conservativeness of $T(L)$ 541
 14.5 Separation over the added dimension 542
 14.6 Temporalizing first-order logic 545
 14.6.1 Temporalizing first-order sentences 546
 14.6.2 Temporalizing first-order formulae 547
 14.7 Internalizing the temporal dimension 550
 14.8 Generalizations 552

15 Decidability in temporal logic 553
 15.1 Introduction 553
 15.2 Monadic second-order logic 554
 15.3 Decision problem for temporal logic 556
 15.3.1 Definitions 556
 15.3.2 Results 557
 15.3.3 Techniques 559
 15.4 Decidability results 560
 15.4.1 The real numbers 560
 15.4.2 Rabin's theorem 561
15.4.3 The integers and natural numbers 561
15.4.4 Finite linear orders 562
15.4.5 The rationals 563
15.4.6 Other classes of linear orders 564
15.4.7 The class of all well-ordered flows 565
15.4.8 Circles 565
15.4.9 Trees 565
15.5 Undecidability results 566
 15.5.1 The class of all flows of time 566
 15.5.2 The real numbers 567
 15.5.3 Other classes 567
 15.5.4 The class of all well-ordered flows 569
15.6 Covering theorem and decidability 571
15.7 Decidability of earlier systems 574
15.8 Complexity 580
 15.8.1 PSPACE-completeness 581

Bibliography 591

Notation Index 641

Index of Systems 642

Index 643