Fundamentals of Preparative and Nonlinear Chromatography

Georges Guiochon
University of Tennessee
and
Oak Ridge National Laboratory Distinguished Scientist
Knoxville, Tennessee

Sadroddin Golshan Shirazi
Senior Scientist
Applied Analytical Industries
Wilmington, North Carolina

Anita M. Katti
Senior Development Engineer
Mallinckrodt Chemical Inc.
St. Louis, Missouri

Academic Press
Boston San Diego New York
London Sydney Tokyo Toronto
TABLE OF CONTENTS

Preface ... xiii

Acknowledgments ... xv

Chapter I. Introduction, Definitions, Goal .. 1
 Introduction .. 1
 I. History of Chromatography .. 3
 1. Discovery by Tswett and Early Works 3
 2. The Manhattan Project and the Purification of Rare Earth Elements 4
 3. The API Project and the Extraction of Purified Hydrocarbons from Crude Oils 6
 4. Preparative Chromatography as a Separation Process 6
 II. Definitions ... 14
 1. Linear and Nonlinear Chromatography 14
 2. Ideal and Nonideal Chromatography 15
 3. Separation, Extraction, and Purification 15
 4. The Various Scales of Preparative Chromatography 16
 III. Goal of the Book .. 17
 References ... 18

Chapter II. The Mass Balance Equation of Chromatography and Its Properties .. 21
 Introduction .. 21
 I. The Mass and Heat Balance Equations of Chromatography 22
 2. Discussion of the Fundamental Assumptions 25
 3. Relationship between the Concentrations in the Stationary and Mobile Phases 27
 4. Near-Isothermal and Nonisothermal Systems 29
 5. Initial and Boundary Conditions 30
 II. Solution of the System of Mass Balance Equations 33
 1. The Ideal Model .. 36
 2. The Equilibrium–Dispersive Model 38
 3. The Lumped Kinetic Models 41
 References ... 47

Chapter III. Single-Component Equilibrium Isotherms .. 49
 Introduction ... 49
 I. Fundamentals of Adsorption Equilibria .. 51
 1. Basic Thermodynamics of Adsorption and the Gibbs Isotherm 53
 2. The Linear Isotherm ... 54
 3. The Langmuir Isotherm in Gas–Solid Equilibria 55
 4. The Virial Isotherm ... 56
 5. Statistical Thermodynamics of Adsorption 57
 6. Liquid–Solid Equilibria ... 59
 7. Surface Excess and Excess Isotherms 60
 II. Models of Adsorption Isotherms 61
 1. The Langmuir Isotherm in Liquid–Solid Equilibria 61
Chapter IV. Competitive Equilibrium Isotherms

Introduction

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicomponent Adsorption and Competitive Isotherm Models</td>
</tr>
<tr>
<td>Competition for Adsorption</td>
</tr>
<tr>
<td>The Competitive Langmuir Isotherm Model and Its Properties</td>
</tr>
<tr>
<td>The Competitive Bi-Langmuir Isotherm</td>
</tr>
<tr>
<td>The Ideal Adsorbed Solution</td>
</tr>
<tr>
<td>The Statistical Isotherm</td>
</tr>
<tr>
<td>The Competitive Fowler Isotherm</td>
</tr>
<tr>
<td>The Competitive Freundlich–Langmuir Isotherm</td>
</tr>
<tr>
<td>Competitive Isotherm Models for Chromatography Modes Other than Adsorption</td>
</tr>
<tr>
<td>The Competitive Martire Isotherm</td>
</tr>
</tbody>
</table>

II. Determination of Competitive Isotherms

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive Frontal Analysis</td>
</tr>
<tr>
<td>Pulse Methods</td>
</tr>
<tr>
<td>The Simple Wave Method</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicomponent Adsorption and Competitive Isotherm Models</td>
</tr>
<tr>
<td>Competition for Adsorption</td>
</tr>
<tr>
<td>The Competitive Langmuir Isotherm Model and Its Properties</td>
</tr>
<tr>
<td>The Competitive Bi-Langmuir Isotherm</td>
</tr>
<tr>
<td>The Ideal Adsorbed Solution</td>
</tr>
<tr>
<td>The Statistical Isotherm</td>
</tr>
<tr>
<td>The Competitive Fowler Isotherm</td>
</tr>
<tr>
<td>The Competitive Freundlich–Langmuir Isotherm</td>
</tr>
<tr>
<td>Competitive Isotherm Models for Chromatography Modes Other than Adsorption</td>
</tr>
<tr>
<td>The Competitive Martire Isotherm</td>
</tr>
</tbody>
</table>

Chapter V. Fundamentals of Transport Phenomena in Chromatography

Introduction

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion</td>
</tr>
<tr>
<td>Diffusivity or Diffusion Coefficients</td>
</tr>
<tr>
<td>Influence of the Concentration on the Bulk Diffusion Coefficients</td>
</tr>
<tr>
<td>Influence of the Pressure on the Bulk Diffusion Coefficients</td>
</tr>
<tr>
<td>Influence of the Temperature on the Bulk Diffusion Coefficients</td>
</tr>
<tr>
<td>Measurement of the Diffusion Coefficients</td>
</tr>
<tr>
<td>Axial Dispersion and Mass Transfer Resistance in Packed Beds</td>
</tr>
<tr>
<td>Axial Dispersion in Packed Beds</td>
</tr>
<tr>
<td>Kinetics of Adsorption in Porous Adsorbents</td>
</tr>
<tr>
<td>The Viscosity of Liquids</td>
</tr>
<tr>
<td>Viscosity of the Mobile Phase</td>
</tr>
<tr>
<td>Importance of the Mobile Phase Viscosity in Preparative Chromatography</td>
</tr>
<tr>
<td>Calculation of the Inlet Pressure in the Case of a Variable Viscosity</td>
</tr>
<tr>
<td>Feed Concentration, Mobile Phase Viscosity, and Inlet Pressure</td>
</tr>
<tr>
<td>Flow Instability and Viscous Fingering</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion</td>
</tr>
<tr>
<td>Diffusivity or Diffusion Coefficients</td>
</tr>
<tr>
<td>Influence of the Concentration on the Bulk Diffusion Coefficients</td>
</tr>
<tr>
<td>Influence of the Pressure on the Bulk Diffusion Coefficients</td>
</tr>
<tr>
<td>Influence of the Temperature on the Bulk Diffusion Coefficients</td>
</tr>
<tr>
<td>Axial Dispersion and Mass Transfer Resistance in Packed Beds</td>
</tr>
<tr>
<td>Axial Dispersion in Packed Beds</td>
</tr>
<tr>
<td>Kinetics of Adsorption in Porous Adsorbents</td>
</tr>
<tr>
<td>The Viscosity of Liquids</td>
</tr>
<tr>
<td>Viscosity of the Mobile Phase</td>
</tr>
<tr>
<td>Importance of the Mobile Phase Viscosity in Preparative Chromatography</td>
</tr>
<tr>
<td>Calculation of the Inlet Pressure in the Case of a Variable Viscosity</td>
</tr>
<tr>
<td>Feed Concentration, Mobile Phase Viscosity, and Inlet Pressure</td>
</tr>
<tr>
<td>Flow Instability and Viscous Fingering</td>
</tr>
</tbody>
</table>

Chapter VI. Linear Chromatography

Introduction

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Plate Models</td>
</tr>
<tr>
<td>Overview of the Approach</td>
</tr>
</tbody>
</table>
Table of Contents

2. The Martin and Synge Plate Model .. 172
3. The Craig Plate Model ... 174
4. Comparison of the Two Plate Models ... 176
II. The Solution of the Mass Balance Equation 178
1. The Equilibrium-Dispersive Model .. 179
2. Solution of the Lumped Kinetic Model .. 184
3. From the Lumped Kinetic Model back to the Equilibrium-Dispersive Model . 189
III. The General Rate Model of Chromatography 189
1. Analytical Solution in a Particular Case .. 192
2. Inverse Laplace Transform of the Solution 195
3. Moment Analysis and Plate Height Equations 197
4. The Golay Plate Height Equation ... 203
5. Dispersion and Partitioning in Short Coated Tubes 204
IV. The Statistical Approach .. 205
1. Transport Equation in Chromatography with a Finite Speed of Signal Propagation. 206
V. Sources of Band Asymmetry and Tailing in Linear Chromatography 207
VI. Extension of Linear Chromatography Models to Nonlinear Chromatography . 213
References ... 215

Chapter VII. The Ideal Model of Chromatography
I. Elution of Single-Component Bands ... 217
Introduction ... 217
I. Retrospective of the Solution of the Ideal Model 218
II. Migration and Evolution of the Band Profile 221
1. Continuous Part or Diffuse Boundary of the Profile 221
2. Origin of the Concentration Shock .. 224
3. Propagation of Concentration Shock .. 226
III. Analytical Solution of the Ideal Model .. 229
1. General Closed-Form Solution ... 229
2. Case of the Langmuir Isotherm ... 230
3. Concentration Profile along the Column ... 233
4. Case of the Bi-Langmuir Isotherm .. 234
5. Case of the Freundlich Isotherm .. 237
6. Asymptotic Solution .. 240
IV. Practical Relevance of the Results of the Ideal Model 241
References ... 243

Chapter VIII. The Ideal Model of Chromatography
II. Elution of Two-Component Bands .. 245
Introduction: Retrospective .. 245
I. General Principle of the Solution .. 248
1. Statement of the Problem and Its Constraints 248
II. Analytical Solution for a Wide Band with Competitive Langmuir Isotherms . 254
1. Position of the Two Concentration Shocks 254
2. Rear Diffuse Profiles of the Two Components 257
3. The Intermediate Plateau on the Rear Diffuse Profile of the Second Component . 258
III. Analytical Solution for a Narrow Band with Competitive Langmuir Isotherms . 260
1. Retention Time of the Second Concentration Shock 262
2. Maximum Concentration of the Two Components in the Mixed Zone 263
3. Elution Profile of the First Component between the Two Shocks 264
4. Retention Time of the First Shock ... 265
IV. Method of Calculation of the Solution of the Ideal Model in a Specific Case . 266
1. Case 1: Wide Injection ... 267
2. Case 2: Injection Plateau Eroded, Pure First Component Plateau Present 268
3. Case 3: Narrow Injection and Mixed Zone 269
4. Case 4: Touching Bands, Second Component Plateau Present 270
5. Case 5: Resolved Bands ... 272
6. Influence of the Width of the Injection Pulse 273
V. Dimensionless Plot of a Two-Component Band System 276
VI. The Displacement Effect ... 276
Chapter IX. The Ideal Model of Chromatography

III. Displacement Chromatography

Introduction .. 299
I. Steady State in the Displacement Mode. The Isotachic Train 301
 1. The Operating Line 303
 2. Influence of the Displacer Concentration 306
 3. The Watershed Point 307
 4. Case of a Trace Component 308
II. The Theory of Characteristics 308
 1. Determination of the Characteristic Parameters 309
 2. Application to Displacement Chromatography 312
 3. Wave Interactions 313
 4. Critical Value of the Displacer Concentration 316
 5. Plateau Concentrations and Bandwidth 317
 6. Critical Column Length for Isotachic Train Formation 321
III. Practical Relevance of the Results of the Ideal Model 321
References ... 322

Chapter X. The Equilibrium–Dispersive Model

I. Elution of Single-Component Bands 325
Introduction .. 325
I. Fundamental Basis of the Model and Apparent Dispersion Coefficient 327
II. Approximate Analytical Solutions 331
 1. The Houghton Solution 331
 2. The Haarhoff–Van der Linde Solution 333
 3. Range of Validity of the Haarhoff–Van der Linde and Houghton Equations 335
 4. Influence of the Sample Size on the Bandwidth 337
 5. Comparison of the Experimental Band Profiles and the Prediction of These Equations 341
III. Numerical Solutions of the Equilibrium–Dispersive Model 342
 1. Principle of the Finite Difference Methods 344
 2. Estimation of the Numerical Errors Made during the Calculation 346
 3. First Method: Calculation of Numerical Solutions of the Mass Balance Equation 347
 5. Application of the Second Method 351
 6. Finite Element Method 357
IV. Results Obtained with the Equilibrium–Dispersive Model 361
 1. Comparison of Solutions of the Ideal and the Equilibrium–Dispersive Models 361
 2. Comparison of the Results of Different Calculation Methods 364
 3. Results of Computer Experiments 368
 4. Comparison with Experimental Results 371
References ... 378

Chapter XI. The Equilibrium–Dispersive Model

II. Isocratic Separations of Two-Component Bands and Gradient Elution 381
Introduction .. 381
I. Numerical Analysis of the Equilibrium–Dispersive Model 382
 1. Finite Difference Methods. Principle 384
 2. Finite Difference Methods. Errors in the Case of Two Components 384
 3. Finite Element Method 390
II. Gradient Elution 393
 1. Solution of the Ideal Model in Gradient Elution 395
 2. Representation of the Isotherm in Gradient Elution 395
Table of Contents

3. Retention of the Modifier ... 397
4. Calculation of Elution Band Profiles .. 398

III. Applications of the Equilibrium–Dispersive Model 401
1. Comparison of Solutions of the Ideal and the Equilibrium–Dispersive Models 401
2. The Hodograph Transform and Its Application 403
3. Results of Computer Experiments .. 403
4. Calculation of Multicomponent Chromatograms 415
5. Comparison of Calculated Band Profiles and Experimental Results 417
6. Experimental and Calculated Band Profiles in Gradient Elution 429

References ... 432

Chapter XII. The Equilibrium–Dispersive Model
III. Frontal Analysis and Displacement .. 435

Introduction ... 435

I. Displacement Chromatography with a Nonideal Column 436
1. Influence of the HETP .. 438
2. Influence of the Sample Size and the Displacer Concentration 438
3. Influence of the Column Length ... 442
4. Influence of the Separation Factor .. 444
5. Case of Trace Components .. 447
7. Case of Selectivity Reversal ... 452

II. Applications of Displacement Chromatography 454
1. Separation of Rare Earths and Other Cations 456
2. Separation of Organic Compounds .. 457
3. Separation of Peptides and Proteins ... 459
4. Separation of Nucleic Acid Constituents 464

III. Comparison of Calculated and Experimental Results 467

References ... 471

Chapter XIII. The Equilibrium–Dispersive Model
IV. System Peaks in Chromatography ... 473

Introduction ... 473

I. System Peaks in Linear Chromatography ... 475
1. General Experimental Results on System Peaks 475
2. Theory of System Peaks .. 478
3. Indirect Detection Using System Peaks 487
4. Application of System Peaks to Analyte Peak Compression 491
5. Vacancy Chromatography ... 492

II. High-Concentration System Peaks ... 496
1. High-Concentration System Peaks for a Single-Component Sample 497
2. High-Concentration System Peaks for a Two-Component Sample 507

References ... 515

Chapter XIV. The Kinetic Models
I. Frontal Analysis and Elution of Single-Component Bands 519

Introduction ... 519

I. Solution of the Breakthrough Curve under Constant Pattern Condition 521
1. Analytical Solution for the Constant Pattern Profile 522
2. Numerical Solution of the Breakthrough Curve under Constant Pattern Behavior 525
3. Effect of Axial Dispersion .. 526
4. The Shock Layer Theory .. 526
5. Shock Layer in the Case of the Langmuir Isotherm 530
6. Properties of the Shock Layer Thickness in Frontal Analysis 531
7. Range of Validity of the Equilibrium–Dispersive Model 537

II. Analytical Solution of the Reaction–Kinetic Model 539
1. Solution of the Reaction–Kinetic Model in the Case of a Step Injection 539
2. Numerical Solutions of the Kinetic Model for a Breakthrough Curve 540
3. Analytical Solution of the Reaction–Kinetic Model in the Case of a Pulse Injection 541
4. Numerical Solution of the Reaction–Dispersive Model for a Pulse Injection 543

References ... 544