MATHEMATICAL FOUNDATIONS OF ELASTICITY

JERROLD E. MARSDEN
Department of Mathematics
University of California, Berkeley

THOMAS J. R. HUGHES
Division of Applied Mechanics
Stanford University

DOVER PUBLICATIONS, INC.
New York
CONTENTS

PREFACE

BRIEF GLOSSARY OF CONVENTIONS AND NOTATIONS

A POINT OF DEPARTURE

1. Kinematics 1
2. Balance Laws 4
3. Elastic Materials 8
4. Boundary Value Problems 11
5. Constitutive Inequalities 16
6. The Role of Geometry and Functional Analysis 21

1 GEOMETRY AND KINEMATICS OF BODIES

1.1. Motions of Simple Bodies 25
1.2. Vector Fields, One-Forms, and Pull-Backs 35
1.3. The Deformation Gradient 47
1.4. Tensors, Two-Point Tensors, and the Covariant Derivative 65
1.5. Conservation of Mass 85
1.6. Flows and Lie Derivatives 93
1.7. Differential Forms and the Piola Transformation 104
2 BALANCE PRINCIPLES 120
2.1. The Master Balance Law 120
2.2. The Stress Tensor and Balance of Momentum 132
2.3. Balance of Energy 142
2.4. Classical Spacetimes, Covariant Balance of Energy, and the Principle of Virtual Work 154
2.5. Thermodynamics II; The Second Law 176

3 CONSTITUTIVE THEORY 180
3.1. The Constitutive Hypothesis 181
3.2. Consequences of Thermodynamics, Locality, and Material Frame Indifference 189
3.3. Covariant Constitutive Theory 199
3.4. The Elasticity Tensor and Thermoelastic Solids 208
3.5. Material Symmetries and Isotropic Elasticity 217

4 LINEARIZATION 226
4.1. The Implicit Function Theorem 226
4.2. Linearization of Nonlinear Elasticity 232
4.3. Linear Elasticity 238
4.4. Linearization Stability 243

5 HAMILTONIAN AND VARIATIONAL PRINCIPLES 247
5.1. The Formal Variational Structure of Elasticity 247
5.2. Linear Hamiltonian Systems and Classical Elasticity 252
5.3. Abstract Hamiltonian and Lagrangian Systems 262
5.4. Lagrangian Field Theory and Nonlinear Elasticity 275
5.5. Conservation Laws 281
5.6. Reciprocity 288
5.7. Relativistic Elasticity 298

6 METHODS OF FUNCTIONAL ANALYSIS IN ELASTICITY 315
6.1. Elliptic Operators and Linear Elastostatics 315
6.2. Abstract Semigroup Theory 332
6.3. Linear Elastodynamics 345
6.4. Nonlinear Elastostatics 370
6.5. Nonlinear Elastodynamics 386
CONTENTS

6.6. The Energy Criterion 411
6.7. A Control Problem for a Beam Equation 421

7 SELECTED TOPICS IN BIFURCATION THEORY 427

7.1. Basic Ideas of Static Bifurcation Theory 427
7.2. A Survey of Some Applications to Elastostatics 447
7.3. The Traction Problem Near a Natural State (Signorini’s Problem) 462
7.4. Basic Ideas of Dynamic Bifurcation Theory 481
7.5. A Survey of Some Applications to Elastodynamics 493
7.6. Bifurcations in the Forced Oscillations of a Beam 504

BIBLIOGRAPHY 517

INDEX 545