Contents of Volume 8

How to Use This Book xv
Preface to the Series xxi
Editorial Consultants to the Series xxv
Contributors to Volume 8 xxvii

4.6. Formation of Bonds Between Elements of Group-VB (N, P, As, Sb, Bi) and Group-IA (Li, Na, K, Rb, Cs, Fr) or Group-IIA (Be, Mg, Ca, Sr, Ba, Ra) 1

4.6.1. Introduction 1
4.6.2. From the Elements 1
4.6.3. In Amines 3
4.6.4. In Nitrides and Amides 3
4.6.4.1. From Ammonia and Amines 3
4.6.4.2. From Molecular Nitrogen 7
4.6.4.3. From Other Nitrogen Compounds 7
4.6.5. In Phosphides 8
4.6.6. In Arsenides 9
4.6.7. In Antimonides 9
4.6.8. In Bismuthides 10

4.7. Formation of Bonds Between the Elements of Group-VB (N, P, As, Sb, Bi) and Group-IB (Cu, Ag, Au) or Group-IIB (Zn, Cd, Hg) 11

4.7.1. Introduction 11
4.7.2. Formation of the Nitrogen—Group-IB or -IIB Element Bond 11
4.7.2.1. From Ammonia and Hydrazine 13
4.7.2.1.1. To Form Ammines 13
4.7.2.1.2. To Form Amido Complexes 17
4.7.2.1.3. To Form Hydrazine and Hydrazine and Hydrazido Complexes 17
4.7.2.2. From Primary, Secondary and Tertiary Amines 18
4.7.2.2.1. To Form Amine Complexes. 18
4.7.2.2.2. To Form Amido Complexes. 19
4.7.2.3. From Diamines, Triamines, and Polyamines 21
 4.7.2.3.1. From Diamines. 21
 4.7.2.3.2. Triamines, Tetramines, Polyamines. 25
4.7.2.4. From Pyridines and Other Aromatic Amines 27
 4.7.2.4.1. From Pyridines. 27
 4.7.2.4.2. From Imidazole Complexes. 30
 4.7.2.4.3. From Pyrazole Complexes. 34
4.7.2.5. From Bipyridyl, Phenanthroline and Related Polyimines 36
 4.7.2.5.1. From Bipyridyl and Phenanthroline. 36
 4.7.2.5.2. From Terpyridyl and Naphthyridine. 38
4.7.2.6. From Nitriles, Oximes and Imines 39
 4.7.2.6.1. From Nitriles. 39
 4.7.2.6.2. From Oximes. 40
 4.7.2.6.3. From Imines. 41
4.7.2.7. From Oxides of Nitrogen 43
4.7.2.8. From Corrins, Porphyrins and Other Related Macrocyclic Nitrogen Donor Ligands 44
 4.7.2.8.1. By Substitution Reactions with Complexes of the Metals. 44
 4.7.2.8.2. By Template Reactions. 46
 4.7.2.9.1. In Homogeneous Monodentatedly Ligated Mononuclear Complexes. 47
 4.7.2.9.2. In Bridged Polynuclear Complexes. 49
 4.7.2.9.3. In Mixed-Ligand Complexes. 50
4.7.2.10. From Organic Nitrogen Anions by Ligand Substitution Reactions with Complexes of the Metals 51
4.7.2.11. From Metal Atom and Related Reactions 54
4.7.3. Formation of the Phosphorus—Group-IB, or -IIB Element Bond 55
 4.7.3.1. From the Elements 55
 4.7.3.2. From Trialkyl and Triarylpophosphines 57
 4.7.3.2.1. By Reaction with Metal Halides. 57
 4.7.3.2.2. By Reaction with Aquo Complexes of the Metals. 59
 4.7.3.2.3. By Reaction with Other Complexes of the Metals. 60
4.7.3.3. From Other Organophosphorus(III) Compounds by Substitution Reactions with Complexes of the Metals 61
4.7.3.4. From Bi- and Polydentate Phosphorus Ligands by Reactions with Complexes of the Metals 63
4.7.3.5. From Organophosphorus Anions and Their Metallo Derivatives with Halides of the Metals 65
4.7.3.6. From Metal Atom and Related Reactions 66
4.7.4. Formation of the Arsenic—, Antimony— and Bismuth—Group-IB or Group-IIB Metal Bond 67
4.7.4.1. From the Reaction of Monodentate Arsines, Stibines and Bismuthines with Compounds 67
4.7.4.2. From the Reaction of Bi- and Polydentate Arsines, Stibines and Bismuthines with Compounds 68
4.7.4.3. From Metal Atom and Related Reactions 69

4.8. Formation of Bonds Between the Elements of Group-VB (N, P, As, Sb, Bi) and the Transition- and Inner-Transition Metals 70

4.8.1. Introduction 70
4.8.2. The Formation of the Nitrogen—Transition and Inner-Transition-Metal Bond 70
4.8.2.1. From the Elements 70
4.8.2.1.1. The Nitrides of the Transition Metals. 70
4.8.2.1.2. The Rare Earth and Group-IIIA Nitrides. 74
4.8.2.1.3. From Metal Atom and Related Reactions. 78
4.8.2.2. Formation of Complexes of Ammonia and Amines 79
4.8.2.2.1. To Form Adducts. 80
4.8.2.2.2. To Form Classical Coordination Complexes of the Later d-Block Metals. 80
4.8.2.3. Complexes of N-Heterocyclic Ligands 83
4.8.2.3.1. Pyridine. 83
4.8.2.3.2. Bipyridyl, Terpyridyl, Phenanthroline. 83
4.8.2.3.3. Other N-Heteroaromatic Ligands. 84
4.8.2.4. Synthesis of Imine Complexes 85
4.8.2.5. Synthesis of Organonitrile Complexes 86
4.8.2.6. Synthesis of Amido Complexes
4.8.2.6.1. By Ammonolysis.
4.8.2.6.2. By Transamination.
4.8.2.6.3. By Transmetallation.
4.8.2.6.4. By Other Routes.
4.8.2.7. Synthesis of Imido Complexes
4.8.2.7.1. Occurrence and Bonding.
4.8.2.7.2. By Deprotonation of NH$_3$ or RNH$_2$.
4.8.2.7.3. By Reacting Mo=O with Silylamines.
4.8.2.7.4. By Adding Organic Azides.
4.8.2.7.5. By Electrophilic Attack on Coordinated Nitrides.
4.8.2.7.6. By Oxo-Imido Exchange Reactions.
4.8.2.7.7. From Disubstituted Hydrazines.
4.8.2.7.8. By Other Methods.
4.8.2.8. Synthesis of Metal—Nitrido Complexes
4.8.2.8.1. Bonding Modes.
4.8.2.8.2. By Ammonolysis.
4.8.2.8.3. From Hydrazines.
4.8.2.8.4. From Azides.
4.8.2.8.5. From NCl$_3$.
4.8.2.8.6. From Nitrosyls.
4.8.2.8.7. From C—N or Si—N Bond Cleavage.
4.8.2.9. Hydrazine and Substituted Hydrazine Complexes
4.8.2.10. Synthesis of Hydrazido(1—) Complexes
4.8.2.10.1. From Diazonium Salts, from Hydrazines, and by Protonation of Hydrazido(2—) Ligands.
4.8.2.11. Synthesis of Hydrazido(2—) Complexes
4.8.2.11.1. From Diazonium Salts, from Hydrazines and by Protonation of N$_2$ and Diazenido Complexes.
4.8.2.12. Synthesis of Diazene Complexes from Coordinated Hydrazines, Dinitrogen, Diazonium Salts, Azobenzene, and by Protonation of Diazenido Complexes
4.8.2.13. Synthesis of Diazenido-Complexes, —NNH and —NNR
4.8.2.13.1. From Diazonium Salts.
4.8.2.13.2. From Hydrazines and Triazenes.
4.8.2.13.3. From Coordinated NO and N$_2$.
4.8.2.13.4. From Me$_3$SiNNPh.
4.8.2.14. Synthesis of Dinitrogen Complexes 113
4.8.2.14.1. From Gaseous N₂. 114
4.8.2.14.2. From Hydrazine and Coordinated Hydrazines. 116
4.8.2.14.3. Via Miscellaneous Preparations. 117
4.8.2.15. Synthesis of Nitrosyl Complexes 118
4.8.2.15.1. From Nitric Oxide. 118
4.8.2.15.2. From Nitrosonium Salts. 120
4.8.2.15.3. From Nitrosyl Halides. 120
4.8.2.15.4. From N-Nitrosamides. 121
4.8.2.15.5. By Transfer of Coordinated NO. 121
4.8.2.15.6. From Hydroxylamines. 121
4.8.2.15.7. From Nitrites. 122
4.8.2.16. Complexes Derived from Oximes and Hydroxylamines 123
4.8.2.17. Synthesis of Coordinated Azides 124
4.8.2.18. From Corrins, Porphyrins and Other Nitrogen-Containing Macrocyclic Ligands 125
4.8.2.18.1. By Ligand Substitution Reactions. 125
4.8.2.18.2. By Template Reactions. 128
4.8.2.19. By Reacting N₂O and N₂O₄ with Transition- and Inner-Transition-Metal Compounds 129
4.8.2.20. From Inorganic Nitrogen-Containing Anions (N₃⁻, [NCO]⁻, [NCS]⁻, [NCSe]⁻, [NO₂]⁻, [CN]⁻, etc.) 131
4.8.2.20.1. In Homogeneous Monodentatedly Ligated Mononuclear Complexes. 131
4.8.2.20.2. In Bridged Polynuclear Complexes. 132
4.8.2.20.3. In Mixed Ligand Complexes. 134
4.8.2.21. From Organic Nitrogen Anions or Their Metallo Derivatives by Metathesis with Transition-Metal Ligands 136
4.8.2.22. From Metal Atom and Related Reactions 141
4.8.3. Formation of the Phosphorus—Transition- and Inner-Transition-Metal Bond 144
4.8.3.1. From Elemental Phosphorus with Transition- and Inner-Transition Metals and Their Complexes 144
4.8.3.1.1. The Phosphides of the Group IV-VIII Transition Metals. 144
4.8.3.1.2. The Phosphides of the Rare Earth and Actinide Metals. 146
4.8.3.1.3. From Other Reactions. 151
4.8.3.2. From Hydrido Derivatives of Phosphorus 153
4.8.3.2.1. By Ligand Substitution Reactions with Transition- and Inner-Transition-Metal Complexes. 153
4.8.3.2.2. By Cleavage of the Phosphorus—Hydrogen Bond. 156
4.8.3.3. From Halo-Derivatives of Phosphorus 160
4.8.3.3.1. By Ligand Substitution Reactions of Transition- and Inner-Transition-Metal Complexes. 160
4.8.3.3.2. By Cleavage of the Phosphorus—Halide Bond. 161
4.8.3.3.3. From Metal Atom and Relation Reactions. 162
4.8.3.4. From Triorganophosphines 164
4.8.3.4.1. By Reaction with Transition- and Inner-Transition-Metal Halides. 164
4.8.3.4.2. By Reaction with Transition- and Inner-Transition-Metal Aquo Complexes. 166
4.8.3.4.3. By Reaction with Transition- or Inner-Transition-Metal Carbonyl, Organometallic and Cluster Compounds. 167
4.8.3.4.4. By Ligand Substitution Reactions with Transition- and Inner-Transition-Metal Complexes. 168
4.8.3.4.5. From Metal-Atom and Related Reactions. 169
4.8.3.5. From Alkoxy and Amino Phosphorus Compounds 171
4.8.3.5.1. By Reaction with Transition- and Inner-Transition-Metal Halides and Aquo Complexes. 171
4.8.3.5.2. By Reaction with Transition- or Inner-Transition-Metal Complexes. 172
4.8.3.6. From Bidentate and Polydentate Phosphorus Ligands 173
4.8.3.6.1. By Reactions with Transition- and Inner-Transition-Metal Carbonyl and Organometallic Complexes. 173
4.8.3.6.2. By Reactions with Transition- and Inner-Transition Halides. 175
4.8.3.7. From Phospholes by Reactions with Transition- and Inner-Transition Complexes 176
4.8.3.7.1. From Neutral Phospholes. 176
4.8.3.7.2. From Phosphole Ions and Phosphametallocenes. 178
4.8.3.8. From Organophosphorus Anions and Metallophosphorus Compounds

4.8.4. Formation of the Arsenic—, Antimony—, and Bismuth—Transition- and Inner-Transition-Metal Bonds

4.8.4.1. From the Elements

4.8.4.2. From Hydrido Derivatives of As, Sb, Bi

4.8.4.3. From Halo Derivatives of As, Sb, Bi

4.8.4.3.1. By Ligand Substitution and Ligand Halogenation.

4.8.4.3.2. By Cleavage of the Group VB—Halogen Bond.

4.8.4.4. From Trialkyl—and Triaryl—Arsines, Stibines and Bismuthines

4.8.4.4.1. By Reaction with Transition- and Inner-Transition-Metal Halides.

4.8.4.4.2. By Reaction with Transition- and Inner-Transition-Metal Aqua Complexes.

4.8.4.4.3. By Reaction with Organometallic and Cluster Compounds.

4.8.4.4.4. From Metal Atom and Related Reactions.

4.8.4.5. From Other Organo Derivatives of As, Sb, Bi and Their Reactions with Transition- and Inner-Transition-Metal Complexes

4.8.4.6. From Bi- and Polydentate As, Sb and Bi Donors

4.8.4.6.1. By Reaction with Transition- and Inner-Transition-Metal Halides.

4.8.4.6.2. By Reaction with Transition- and Inner-Transition-Metal Aqua Complexes.

4.8.4.6.3. By Reaction with Organometallic and Cluster Compounds.

4.8.4.6.4. By Other Ligand Substitution Reactions.

4.8.4.7. From Other Organo-Group-VB and Metallo-Group-VP Compounds

4.8.4.7.1. By Reaction with Transition- and Inner-Transition-Metal Halides and Their Complexes.

4.8.4.7.2. By Reaction with Transition- and Inner-Transition-Metal Organometallic Complexes.

4.9.1. Introduction 194
4.9.2. Substitution Reactions 194
4.9.3. Van der Waals Complexes 196

4.10. Formation of Group-VB (N, P, As, Sb, Bi)—Group-IIIB (B, Al, Ga, In, Tl) Compounds and Alloys

4.10.1. Introduction 197
4.10.2. Direct Synthesis of Bulk Group-IIIB—Group-VB Compounds 197

4.10.2.1. General Reaction Techniques 197
4.10.2.1.1. Introduction 197
4.10.2.1.2. Liquid-Vapor Reactions 197
4.10.2.1.3. Liquid-Liquid Reactions 200
4.10.2.2. Nitrides 201
4.10.2.2.1. Boron Nitride 201
4.10.2.2.2. Aluminum Nitride 201
4.10.2.2.3. Gallium Nitride 202
4.10.2.3. Phosphides 202
4.10.2.3.1. Boron Phosphide 202
4.10.2.3.2. Aluminum Phosphide 202
4.10.2.3.3. Gallium Phosphide 203
4.10.2.3.4. Indium Phosphide 205
4.10.2.4. Arsenides 206
4.10.2.4.1. Aluminum Arsenide 206
4.10.2.4.2. Gallium Arsenide 207
4.10.2.4.3. Indium Arsenide 209
4.10.2.5. Antimonides 209
4.10.3. Epitaxial Synthesis 210
4.10.3.1. Liquid-Phase Epitaxy 211
4.10.3.2. Vapor-Phase Epitaxy 214
4.10.3.2.1. Chemical Vapor Deposition by the Arsine System 214
4.10.3.2.2. Arsenic Trichloride Deposition 216
4.10.3.3. Metal Organic Chemical Vapor Deposition 218
4.10.3.4. Molecular Beam Epitaxy 220
4.10.3.5. Ion Implantation 222
4.10.3.6. Ion Cluster Beam 223
List of Abbreviations 227
Author Index 235
Compound Index 279
Subject Index 477