ELECTRONICS, COMPUTERS
AND TELEPHONE SWITCHING

A book of technological history
as Volume 2: 1960–1985 of
“100 Years of Telephone Switching”

Robert J. Chapuis
Amos E. Joel, Jr.
CONTENTS

Preface vii
Foreword ix

Part I Introduction to the Book
Chapter I-1 Introduction to the Book 3
Chapter I-2 History and Technology: some basic comments concerning the case of electronics and telecommunication developments 9
Chapter I-3 Language issues 18

Part II The Roots of Electronic Switching (1935–1950)
Chapter II-1 Electronics and the Switching Technology (1935–1950) 29
Chapter II-2 A Philosophical View of the studies of electronic switching after World War II 38
Chapter II-3 1945–1955 Researches into electronics for telephone switching 43
Chapter II-4 The 1955–1960 period: Researches and Field Trials in Bell Laboratories 48
Chapter II-5 Experimental models and trials outside of Bell Laboratories during the 1955–1960 period 57

Part III The Beginnings of the Computer Industry
General Bibliography for Part III 68
Chapter III-1 In the History of Mankind, the fascinating long march until the 1930s to develop computing devices 69
Chapter III-2 The computer ancestors of the 1940s. Emergence of the basic concepts which led to electronic computing through the next decades 78
Chapter III-3 The 1950s: the memory race 91
Chapter III-4 Programming languages 100
Chapter III-5 A short survey of the computer industry after 1960. Interrelationship between computers and telecommunications 111

Part IV Semiconductor Researches and Microelectronics Developments
Chapter IV-1 The background history of semiconductors 119
Chapter IV-2 Research on semi-conductors in the Bell Telephone Laboratories. The birth of the transistor 128
Chapter IV-3 The spread of transistor technology 139
Chapter IV-4 After 1960, the microelectronics 144

Part V After the Preliminary Research, the first Development of Electronic Switching. The Post 1965 SPC Systems

Chapter V-1 AT&T/Western Electric Developments: ESS 1, 2, 3, TSPS, AIS 153
Chapter V-2 The Breakthrough of the SPC Technology outside AT&T. A first generation of SPC exchanges 174
Chapter V-3 GTE (General Telephone and Electronics Corporation) 178
Chapter V-4 Canada and its first generation of SPC exchanges 184
Chapter V-5 Japan and its first generation of SPC exchanges 188
Chapter V-6 United Kingdom (1960–1980). The space-division TXE 2 and TXE 4 systems 195
Chapter V-7 Germany (FRG): 1960–1979 developments 204
Chapter V-8 France: From Aristotle to E10 218
Chapter V-9 ITT and the Metaconta 225
Chapter V-10 LM Ericsson – the AKE systems and beginnings of the AXE family 233
Chapter V-11 In The Netherlands, Philips’ PRX system 240

Part VI The Success of the SPC Concept for the design of switching systems

Chapter VI-1 Typology and Analysis of SPC 1st generation 245
Chapter VI-2 The Success of the SPC Concept for the design of switching exchanges. A Chronology as traced by successive ISSs 249

Part VII Software for SPC systems

Chapter VII-1 Software for SPC Systems 257
Chapter VII-2 The origins of the CCITT Software languages for SPC switching systems 265
Chapter VII-3 The CCITT “Specification and Description Language” (“SDL”) 267
Chapter VII-4 “CHILL”, the CCITT High Level Language for programming SPC switching systems 274
Chapter VII-5 “MML”, the CCITT Man-Machine Language 280
Chapter VII-6 Yet more developments in SPC exchange programming languages 283

Part VIII In the 1970s, the Digital Revolution. The first generation of digital systems

Chapter VIII-1 The Genesis of PCM Systems 292
Chapter VIII-2 The birth of digital switching 293
Chapter VIII-3 Research and Field Trials of digital switching systems in the 1960s-1970s 303
Chapter VIII-4 The French E10 system and its evolution over twenty five years 313
Chapter VIII-5 The French MT system 319
Chapter VIII-6 In the United States, AT&T’s digital switch entry: No. 4 ESS, first generation time-division digital switching 326
Chapter VIII-7 The first local digital systems in the United States 332
Chapter VIII-8 Canada: the DMS family 349
Chapter VIII-9 The LM Ericsson AXE digital system 358

Part IX A Second Generation of digital systems (post-1980 systems)

Chapter IX-1 Introduction to Part IX. Why two generations of digital switches? 369
Chapter IX-2 Extending time-division switching 372
Chapter IX-3 No. 5 ESS – AT&T's entry into the time-division race: Late to start – leading the pack 379
Chapter IX-4 The American GTD System 390
Chapter IX-5 System X (United Kingdom) 395
Chapter IX-6 The Siemens EWSD system 409
Chapter IX-7 The ITT (now ALCATEL) “System 12” 415
Chapter IX-8 Digital systems of Japan: D60/D70, NEAX61, FETEX150, HDX10, KB270, XE30 425
Chapter IX-9 Italy and Italian switching systems 431
Chapter IX-10 Time-division digital systems outside of North America, Western Europe and Japan 438

Part X Signaling in the Electronic Era

Chapter X-1 Some thoughts on signaling 451
Chapter X-2 1961–1964: Intercontinental System No. 5 454
Chapter X-3 1964–1968: Choices from a range of options 457
Chapter X-4 A History of CCITT System No. 6 462
Chapter X-5 Birth and beginnings of international CCITT System No. 7 477
Chapter X-6 From common channel signaling to the stored program network 488
Chapter X-7 Traditional subscriber line signaling, the alpha of all signaling systems 494
Chapter X-8 From the 1960–1970s, subscriber signaling from a push-button set 497
Chapter X-9 Signaling over the subscriber line in an ISDN structure 504

Chapter XI-1 A worldwide overview of telephone deployment between 1960 and 1985 523
Chapter XI-2 Analysis of the demand for telecommunications during the 1960s and 1970s 534
Chapter XI-3 Characteristic features of the telephone operating agencies structures in 1960 and 1985 540
Chapter XI-4 Some economic views concerning switching within telecommunication agencies 552
Chapter XI-5 The switchgear manufacturing industry. 1965–1987: A thorough shake-up in its structures 557

Credits 575

A Glossary 577
CONTENTS

Indexes

I. Science and Telecommunication Personalities 583
II. Telecommunication Companies and Institutions quoted: Names and Acronyms 587
III. Main Switching Systems 591
IV. Subject Index 593