Spectral Theory of Differential Operators

G.V. Rozenblum, M.A. Shubin, M.Z. Solomyak

Translated from the Russian
by T. Zastawniak

Contents

Preface ... 5

§1 Some Information on the Theory of Operators in a Hilbert Space . 7
 1.1. Linear Operators. Closed Operators 7
 1.2. The Adjoint Operator 8
 1.3. Self-Adjoint Operators 8
 1.4. The Spectrum of an Operator 9
 1.5. Spectral Measure. The Spectral Theorem for Self-Adjoint
 Operators .. 9
 1.6. The Pure Point, Absolutely Continuous, and Continuous
 Singular Components of a Self-Adjoint Operator 11
 1.7. Other Formulations of the Spectral Theorem 12
 1.8. Semi-Bounded Operators and Forms 13
 1.9. The Friedrichs Extension 15
 1.10. Variational Triples 15
 1.11. The Distribution Function of the Spectrum.
 The Spectral Function 16
 1.12. Compact Operators 18

§2 Defining Differential Operators. Essential Self-Adjointness 19
 2.1. Differential Expressions and Their Symbols 19
 2.2. Elliptic Differential Expressions 20
 2.3. The Maximal and Minimal Operators 21
2.4. Essential Self-Adjointness of Elliptic Operators 23
2.5. Singular Differential Operators 25
2.6. The Schrödinger Operator 26
2.7. The Schrödinger Operator: Local Singularities of the Potential 29
2.8. The Dirac Operator ... 30

§3 Defining an Operator by a Quadratic Form 31
3.1. Examples ... 32
3.2. The Schrödinger Operator and Its Generalizations 34
3.3. Non-Semi-Bounded Potentials 35
3.4. Weighted Polyharmonic Operator 36

§4 Examples of Exact Computation of the Spectrum 38
4.1. Operators with Constant Coefficients on \mathbb{R}^n and on a Torus 38
4.2. The Factorization Method 40
4.3. Operators on a Sphere and a Hemisphere 41

§5 Differential Operators with Discrete Spectrum.
Estimates of Eigenvalues .. 42
5.1. Basic Examples of Differential Operators with Discrete Spectrum 43
5.2. Estimates of Eigenvalues 44
5.3. Estimates of the Spectrum of a Weighted Polyharmonic Operator 46
5.4. Estimates of the Spectrum: Heuristic Approach 48
5.5. Estimates of Eigenfunctions 49

§6 Differential Operators with Non-Empty Essential Spectrum 50
6.2. Essential Spectrum of the Schrödinger Operator with Decreasing Potential 51
6.3. Negative Spectrum of the Schrödinger Operator 51
6.4. The Dirac Operator ... 54
6.5. Eigenvalues within the Continuous Spectrum 55
6.6. On the Essential Spectrum of the Stokes Operator 56

§7 Multiparticle Schrödinger Operator 56
7.1. Definition of the Operator. Centre of Mass Separation 56
7.2. Subsystems. Essential Spectrum 58
7.3. Eigenvalues .. 60
7.4. Refinement of the Physical Model 61
§8 Investigation of the Spectrum by the Methods of Perturbation Theory ... 62
 8.1. The Rayleigh-Schrödinger Series .. 63
 8.2. Typical Spectral Properties of Elliptic Operators 64
 8.3. The Asymptotic Rayleigh-Schrödinger Series 65
 8.4. Singular Perturbations .. 66
 8.5. Semiclassical Asymptotics .. 66

§9 Asymptotic Behaviour of the Spectrum. I. Preliminary Remarks 68
 9.1. Two Forms of Asymptotic Formulae ... 68
 9.2. Formulae for the Leading Term of the Asymptotics 69
 9.3. The Weyl Asymptotics for Regular Elliptic Operators 71
 9.4. Refinement of the Asymptotic Formulae 74
 9.5. Spectrum with Accumulation Point at 0 76
 9.6. Semiclassical Asymptotics .. 77
 9.7. Survey of Methods for Obtaining Asymptotic Formulae 78

§10 Asymptotic Behaviour of the Spectrum. II. Operators with ‘Non-Weyl’ Asymptotics .. 81
 10.1. The General Scheme .. 81
 10.2. The Operator \(-\Delta_D\) in Infinite Horn-Shaped Domains 82
 10.3. Elliptic Operators Degenerate at the Boundary of the Domain 83
 10.4. Hypoelliptic Operators with Double Characteristics 84
 10.5. The Cohn-Laplace Operator .. 85
 10.6. The \(n\)-Dimensional Schrödinger Operator with Homogeneous Potential 86
 10.7. Compact Operators with Non-Weyl Asymptotic Behaviour of the Spectrum 88

§11 Variational Technique in Problems on Spectral Asymptotics 89
 11.1. Continuity of Asymptotic Coefficients 89
 11.2. Outline of the Proof of Formula (9.25) 90
 11.3. Other Applications of the Variational Method 91
 11.4. Problems with Constraints .. 94

§12 The Resolvent and Parabolic Methods. Spectral Geometry 96
 12.1. The Resolvent Method .. 96
 12.2. The Case of Non-Weyl Asymptotic Behaviour of the Spectrum 99
 12.3. Refinement of the Asymptotic Formulae 100
 12.4. The Parabolic Equation Method .. 101
 12.5. Complete Asymptotic Expansion of the \(\theta\)-Function 103
 12.6. Spectral Geometry .. 104
 12.7. Computation of Coefficients ... 105
12.8. The Problem of Reconstructing the Metric from the Spectrum .. 106
12.9. Connection with Probability Theory .. 108

§13 The Hyperbolic Equation Method ... 108
13.1. Tauberian Theorem for the Fourier Transform ... 109
13.2. Outline of the Method .. 112
13.3. Global Fourier Integral Operators .. 115
13.4. Remarks on Other Problems. Reflection and Branching of Bicharacteristics .. 121
13.5. Normal Singularity. Two-Term Asymptotic Formulae 126
13.6. Other Results .. 128

§14 Bicharacteristics and Spectrum ... 131
14.1. The General Two-Term Asymptotic Formula .. 132
14.2. Operators with Periodic Bicharacteristic Flow 135
14.3. 'Weak' Non-Zero Singularities of $a(t)$... 137
14.4. Quasimodes .. 139
14.5. Construction of Quasimodes .. 140

§15 Approximate Spectral Projection Method .. 143
15.1. The Basic Concept .. 143
15.2. Operator Estimates .. 145
15.3. Construction of an Approximate Spectral Projection 147
15.4. Some Precise Formulations .. 149

§16 The Laplace Operator on Homogeneous Spaces and on Fundamental Domains of Discrete Groups of Motions .. 157
16.1. Preliminary Remarks .. 157
16.2. The Automorphic Laplace Operator .. 158
16.3. The Laplace Operator on a Flat Torus. The Poisson Formula 158
16.4. The Case of Spaces of Constant Negative Curvature 160
16.5. The Case of Spaces of Constant Positive Curvature 161
16.6. Isospectral Families of Nilmanifolds .. 164
16.7. Sunada's Technique and Solution of Kac's Problem 165

§17 Operators with Periodic Coefficients .. 169
17.1. Bloch Functions and the Zone Structure of the Spectrum of an Operator with Periodic Coefficients .. 169
17.2. The Character of the Spectrum of an Operator with Periodic Coefficients .. 177
17.3. Quantitative Characteristics of the Spectrum: Global Quasimomentum, Rotation Number, Density of States, and Spectral Function .. 180
§18 Operators with Almost Periodic Coefficients 186
18.2. General Properties of the Spectrum and Eigenfunctions 188
18.3. The Spectrum of the One-Dimensional Schrödinger
 Operator with an Almost Periodic Potential 192
18.4. The Density of States of an Operator with Almost Periodic
 Coefficients ... 197
18.5. Interpretation of the Density of States with the Aid
 of von Neumann Algebras and Its Properties 199

§19 Operators with Random Coefficients 206
19.1. Translation Homogeneous Random Fields 207
19.2. Random Differential Operators 212
19.3. Essential Self-Adjointness and Spectra 214
19.4. Density of States ... 217
19.5. The Character of the Spectrum. Anderson Localization 220

§20 Non-Self-Adjoint Differential Operators that Are Close
 to Self-Adjoint Ones 222
20.1. Preliminary Remarks 222
20.2. Basic Examples ... 225
20.3. Completeness Theorems 226
20.4. Expansion and Summability Theorems.
 Asymptotic Behaviour of the Spectrum 228
20.5. Application to Differential Operators 230

Comments on the Literature .. 234

References .. 236

Author Index .. 262

Subject Index .. 265