Introduction to the
Modern Theory of Dynamical Systems

ANATOLE KATOK
Pennsylvania State University

BORIS HASSELBLATT
Tufts University

With a supplement by Anatole Katok and Leonardo Mendoza
Contents

0. INTRODUCTION 1
 1. Principal branches of dynamics 1
 2. Flows, vector fields, differential equations 6
 3. Time-one map, section, suspension 8
 4. Linearization and localization 10

Part 1 Examples and fundamental concepts

1. FIRST EXAMPLES 15
 1. Maps with stable asymptotic behavior 15
 Contracting maps; Stability of contractions; Increasing interval maps
 2. Linear maps 19
 3. Rotations of the circle 26
 4. Translations on the torus 28
 5. Linear flow on the torus and completely integrable systems 32
 6. Gradient flows 35
 7. Expanding maps 39
 8. Hyperbolic toral automorphisms 42
 9. Symbolic dynamical systems 47
 Sequence spaces; The shift transformation; Topological Markov chains; The
 Perron–Frobenius operator for positive matrices

2. EQUIVALENCE, CLASSIFICATION, AND INVARIANTS 57
 1. Smooth conjugacy and moduli for maps 57
 Equivalence and moduli; Local analytic linearization; Various types of moduli
 2. Smooth conjugacy and time change for flows 64
 3. Topological conjugacy, factors, and structural stability 68
 4. Topological classification of expanding maps on a circle 71
 Expanding maps; Conjugacy via coding; The fixed-point method
 5. Coding, horseshoes, and Markov partitions 79
 Markov partitions; Quadratic maps; Horseshoes; Coding of the toral automor-
 phism
 6. Stability of hyperbolic toral automorphisms 87
 7. The fast-converging iteration method (Newton method) for the
 conjugacy problem 90
 Methods for finding conjugacies; Construction of the iteration process
 8. The Poincaré–Siegel Theorem 94
 9. Cocycles and cohomological equations 100

3. PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS 105
 1. Growth of orbits 105
 Periodic orbits and the ζ-function; Topological entropy; Volume growth; Topo-
 logical complexity; Growth in the fundamental group; Homological growth
2. Examples of calculation of topological entropy
 Isometries; Gradient flows; Expanding maps; Shifts and topological Markov
 chains; The hyperbolic toral automorphism; Finiteness of entropy of Lipschitz
 maps; Expansive maps

3. Recurrence properties

4. Statistical behavior of orbits and introduction to ergodic theory
 1. Asymptotic distribution and statistical behavior of orbits
 Asymptotic distribution, invariant measures; Existence of invariant measures;
 The Birkhoff Ergodic Theorem; Existence of asymptotic distribution; Ergodic-
 ity and unique ergodicity; Statistical behavior and recurrence; Measure-
 theoretic isomorphism and factors
 2. Examples of ergodicity; mixing
 Rotations; Extensions of rotations; Expanding maps; Mixing; Hyperbolic toral
 automorphisms; Symbolic systems
 3. Measure-theoretic entropy
 Entropy and conditional entropy of partitions; Entropy of a measure-preserving
 transformation; Properties of entropy
 4. Examples of calculation of measure-theoretic entropy
 Rotations and translations; Expanding maps; Bernoulli and Markov measures;
 Hyperbolic toral automorphisms

5. The Variational Principle

5. Systems with smooth invariant measures and more examples
 1. Existence of smooth invariant measures
 The smooth measure class; The Perron–Frobenius operator and divergence;
 Criteria for existence of smooth invariant measures; Absolutely continuous
 invariant measures for expanding maps; The Moser Theorem
 2. Examples of Newtonian systems
 The Newton equation; Free particle motion on the torus; The mathematical
 pendulum; Central forces
 3. Lagrangian mechanics
 Uniqueness in the configuration space; The Lagrange equation; Lagrangian
 systems; Geodesic flows; The Legendre transform
 4. Examples of geodesic flows
 Manifolds with many symmetries; The sphere and the torus; Isometries of the
 hyperbolic plane; Geodesics of the hyperbolic plane; Compact factors; The
 dynamics of the geodesic flow on compact hyperbolic surfaces
 5. Hamiltonian systems
 Symplectic geometry; Cotangent bundles; Hamiltonian vector fields and flows;
 Poisson brackets; Integrable systems
 6. Contact systems
 Hamiltonian systems preserving a 1-form; Contact forms

Part 2 Local analysis and orbit growth

6. Local hyperbolic theory and its applications
 1. Introduction
 2. Stable and unstable manifolds
 Hyperbolic periodic orbits; Exponential splitting; The Hadamard–Perron The-
 orem; Proof of the Hadamard–Perron Theorem; The Inclination Lemma
 3. Local stability of a hyperbolic periodic point
 The Hartman–Grobman Theorem; Local structural stability
4. Hyperbolic sets
 Definition and invariant cones; Stable and unstable manifolds; Closing Lemma
 and periodic orbits; Locally maximal hyperbolic sets

5. Homoclinic points and horseshoes
 General horseshoes; Homoclinic points; Horseshoes near homoclinic points

6. Local smooth linearization and normal forms
 Jets, formal power series, and smooth equivalence; General formal analysis;
 The hyperbolic smooth case

7. TRANSVERSALITY AND GENERICITY
 1. Generic properties of dynamical systems
 Residual sets and sets of first category; Hyperbolicity and genericity
 2. Genericity of systems with hyperbolic periodic points
 Transverse fixed points; The Kupka–Smale Theorem
 3. Nontransversality and bifurcations
 Structurally stable bifurcations; Hopf bifurcations
 4. The theorem of Artin and Mazur

8. ORBIT GROWTH ARISING FROM TOPOLOGY
 1. Topological and fundamental-group entropies
 2. A survey of degree theory
 Motivation; The degree of circle maps; Two definitions of degree for smooth
 maps; The topological definition of degree
 3. Degree and topological entropy
 4. Index theory for an isolated fixed point
 5. The role of smoothness: The Shub–Sullivan Theorem
 6. The Lefschetz Fixed-Point Formula and applications
 7. Nielsen theory and periodic points for toral maps

9. VARIATIONAL ASPECTS OF DYNAMICS
 1. Critical points of functions, Morse theory, and dynamics
 2. The billiard problem
 3. Twist maps
 Definition and examples; The generating function; Extensions; Birkhoff peri­
 odic orbits; Global minimality of Birkhoff periodic orbits
 4. Variational description of Lagrangian systems
 5. Local theory and the exponential map
 6. Minimal geodesics
 7. Minimal geodesics on compact surfaces

Part 3 Low-dimensional phenomena

10. INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS?
 Motivation; The intermediate value property and conformality; Very low-
 dimensional and low-dimensional systems; Areas of low-dimensional dynamics

11. HOMEOMORPHISMS OF THE CIRCLE
 1. Rotation number
 2. The Poincaré classification
 Rational rotation number; Irrational rotation number; Orbit types and mea-
 surable classification
12. CIRCLE DIFFEOMORPHISMS

1. The Denjoy Theorem 401
2. The Denjoy example 403
3. Local analytic conjugacies for Diophantine rotation number 405
4. Invariant measures and regularity of conjugacies 410
5. An example with singular conjugacy 412
6. Fast-approximation methods 415
 Conjugacies of intermediate regularity; Smooth cocycles with wild coboundaries 415
7. Ergodicity with respect to Lebesgue measure 419

13. TWIST MAPS

1. The Regularity Lemma 423
2. Existence of Aubry–Mather sets and homoclinic orbits 425
 Aubry–Mather sets; Invariant circles and regions of instability 425
3. Action functionals, minimal and ordered orbits 434
 Minimal action; Minimal orbits; Average action and minimal measures; Stable sets for Aubry–Mather sets 434
4. Orbits homoclinic to Aubry–Mather sets 441
5. Nonexistence of invariant circles and localization of Aubry–Mather sets 447

14. FLOWS ON SURFACES AND RELATED DYNAMICAL SYSTEMS 451

1. Poincaré–Bendixson theory 452
 The Poincaré–Bendixson Theorem; Existence of transversals 452
2. Fixed-point-free flows on the torus 457
 Global transversals; Area-preserving flows 457
3. Minimal sets 460
4. New phenomena 464
 The Cherry flow; Linear flow on the octagon 464
5. Interval exchange transformations 470
 Definitions and rigid intervals; Coding; Structure of orbit closures; Invariant measures; Minimal nonuniquely ergodic interval exchanges 470
6. Application to flows and billiards 479
 Classification of orbits; Parallel flows and billiards in polygons 479
7. Generalizations of rotation number 483
 Rotation vectors for flows on the torus; Asymptotic cycles; Fundamental class and smooth classification of area-preserving flows 483

15. CONTINUOUS MAPS OF THE INTERVAL 489

1. Markov covers and partitions 489
2. Entropy, periodic orbits, and horseshoes 493
3. The Sharkovskiy Theorem 500
4. Maps with zero topological entropy 505
5. The kneading theory 511
6. The tent model 514

16. SMOOTH MAPS OF THE INTERVAL 519

1. The structure of hyperbolic repellers 519
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Hyperbolic sets for smooth maps</td>
<td>520</td>
</tr>
<tr>
<td>3. Continuity of entropy</td>
<td>525</td>
</tr>
<tr>
<td>4. Full families of unimodal maps</td>
<td>526</td>
</tr>
<tr>
<td>Part 4 Hyperbolic dynamical systems</td>
<td></td>
</tr>
<tr>
<td>17. SURVEY OF EXAMPLES</td>
<td></td>
</tr>
<tr>
<td>1. The Smale attractor</td>
<td>531</td>
</tr>
<tr>
<td>2. The DA (derived from Anosov) map and the Plykin attractor</td>
<td>532</td>
</tr>
<tr>
<td>3. Expanding maps and Anosov automorphisms of nilmanifolds</td>
<td>537</td>
</tr>
<tr>
<td>4. Definitions and basic properties of hyperbolic sets for flows</td>
<td>541</td>
</tr>
<tr>
<td>5. Geodesic flows on surfaces of constant negative curvature</td>
<td>544</td>
</tr>
<tr>
<td>6. Geodesic flows on compact Riemannian manifolds with negative sectional curvature</td>
<td>549</td>
</tr>
<tr>
<td>18. TOPOLOGICAL PROPERTIES OF HYPERBOLIC SETS</td>
<td></td>
</tr>
<tr>
<td>1. Shadowing of pseudo-orbits</td>
<td>565</td>
</tr>
<tr>
<td>2. Stability of hyperbolic sets and Markov approximation</td>
<td>571</td>
</tr>
<tr>
<td>3. Spectral decomposition and specification</td>
<td>574</td>
</tr>
<tr>
<td>4. Local product structure</td>
<td>581</td>
</tr>
<tr>
<td>5. Density and growth of periodic orbits</td>
<td>583</td>
</tr>
<tr>
<td>6. Global classification of Anosov diffeomorphisms on tori</td>
<td>587</td>
</tr>
<tr>
<td>7. Markov partitions</td>
<td>591</td>
</tr>
<tr>
<td>19. METRIC STRUCTURE OF HYPERBOLIC SETS</td>
<td></td>
</tr>
<tr>
<td>1. Hölder structures</td>
<td>597</td>
</tr>
<tr>
<td>2. Cohomological equations over hyperbolic dynamical systems</td>
<td>608</td>
</tr>
<tr>
<td>20. EQUILIBRIUM STATES AND SMOOTH INVARIANT MEASURES</td>
<td></td>
</tr>
<tr>
<td>1. Bowen measure</td>
<td>615</td>
</tr>
<tr>
<td>2. Pressure and the variational principle</td>
<td>623</td>
</tr>
<tr>
<td>3. Uniqueness and classification of equilibrium states</td>
<td>628</td>
</tr>
<tr>
<td>4. Smooth invariant measures</td>
<td>637</td>
</tr>
<tr>
<td>5. Margulis measure</td>
<td>643</td>
</tr>
</tbody>
</table>