Mechanical Analysis and Design
SECOND EDITION

Arthur H. Burr
Late Hiram Sibley Professor of Mechanical Engineering, Emeritus
Cornell University

John B. Cheatham
Chairman, Department of Mechanical Engineering and Materials Science
William Marsh Rice University

PRENTICE HALL
Englewood Cliffs, NJ 07632
Contents

PREFACE xvii
TABLES OF REFERENCE VALUE xx
SYMBOLS xxi
ABBREVIATIONS xxviii

1 INTRODUCTION 1

1.1 Analysis and Mechanical Design: The Design Process 1
1.2 Analysis and Creativity: Some Rules for Design 3
1.3 Product Safety and Product Liability 5
1.4 Factor of Safety and Reliability 6
1.5 Purpose and Scope of Book 7
1.6 Arrangement of Topics 8
1.7 Nomenclature 9
1.8 Units and Conversion 10
References 12
2 FLUID FILM LUBRICATION

Sliding Element Bearings

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Film Viscosity and Shear: No-Load Resistance</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Viscometers and Kinematic Viscosity</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Lubricants: Classifications and Characteristics</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Boundary Lubrication</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Bearing Materials</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>A Pressure-Velocity Relationship: Establishment of Pressure in Fluid Films</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>General Equations For Velocities, Flow, and Continuity: Reynolds’ Equation</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Hydrostatic (Externally Pressurized) Bearings: Rotating Thrust Pads</td>
<td>35</td>
</tr>
<tr>
<td>2.10</td>
<td>Hydrostatic Bearings: Sliding Pads and Flow Restrictors</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>Squeeze Films</td>
<td>42</td>
</tr>
<tr>
<td>2.12</td>
<td>Hydrodynamic Thrust Bearings</td>
<td>44</td>
</tr>
<tr>
<td>2.13</td>
<td>Journal Bearings—Eccentricity and Pressures</td>
<td>46</td>
</tr>
<tr>
<td>2.14</td>
<td>Journal Bearings—Load, Attitude, and Torques</td>
<td>50</td>
</tr>
<tr>
<td>2.15</td>
<td>Load Number and Design for Bearing Size</td>
<td>52</td>
</tr>
<tr>
<td>2.16</td>
<td>Journal Bearings—Lubricant Flow and Delivery</td>
<td>56</td>
</tr>
<tr>
<td>2.17</td>
<td>Journal Bearings—Power Loss, Heat, And Temperatures</td>
<td>61</td>
</tr>
<tr>
<td>2.18</td>
<td>Design by Load Number</td>
<td>65</td>
</tr>
<tr>
<td>2.19</td>
<td>Other Solutions and Characteristic Numbers</td>
<td>67</td>
</tr>
<tr>
<td>2.20</td>
<td>Bearing Capacity with Rotating Loads and Sleeves</td>
<td>69</td>
</tr>
<tr>
<td>2.21</td>
<td>Dynamic Loads and Special Bearings</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>79</td>
</tr>
</tbody>
</table>

3 FRICTION THEORY AND APPLICATIONS

Brakes, Clutches, and Belt Drives

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>3.2</td>
<td>Work, Torque, and Motion in Brake and Clutch Systems</td>
<td>108</td>
</tr>
<tr>
<td>3.3</td>
<td>Short Contacts on the Cylindrical Surfaces of Drums</td>
<td>114</td>
</tr>
<tr>
<td>3.4</td>
<td>Long Shoes on Cylindrical Surfaces</td>
<td>118</td>
</tr>
</tbody>
</table>
3.5 Design of Shoe Brakes 125
3.6 Self-Actuation 128
3.7 Disks and Cones 131
3.8 Flexible Bands 137
3.9 Band Brakes and Clutches 142
3.10 The Coil or Spring Clutch 146
3.11 Flat Belt Drives—General 147
3.12 Fixed-Center Drives 151
3.13 Self-Tightening Drives 154
3.14 Multiple-Pulley Drives 157
3.15 V-Belts and Other Drive Belts 159
3.16 V-Belt Selection 163
3.17 Wire Rope and Drives 165
References 170
Problems 170

4 MISCELLANEOUS TRANSMISSION COMPONENTS 209

4.1 Introduction 209
4.2 Power Transmission and Other Chains 210
 Inverted-tooth (Silent) Chain, 212
4.3 Chain Characteristics 213
4.4 Chain Capacity and Rating 219
 Forces, 219
4.5 Chain Selection 224
 Pitch by Chart and Table, 224
 Pitch by Equation, 224
4.6 Belt and Chain Variable-Speed Transmissions 226
4.7 Fluid Coupling Action 227
4.8 Slip, Efficiency, and Torque Capacity in Couplings 229
4.9 Performance and Application of Fluid Couplings 231
4.10 Speed Adjustment with Fluid Couplings 233
4.11 Hydraulic Torque Converters: Equations, Performance,
 and Modifications 235
References 241
Problems 242
5 STRESS, STRAIN, AND STRENGTH

General Elastic Relationships, Theories of Failure, Plasticity and Limit Design, Fatigue Strength and Stress Concentration, Fracture Mechanics, Reliability, and Safety Factors

5.1 Introduction 255
5.2 Strain, Stress, and Strength 256
5.3 Component Stresses and Principal Stresses 262
5.4 Graphical Representation 264
5.5 Maximum Shear-Stress Theory of Failure 270
5.6 Mises Criterion or Maximum Energy of Distortion Theory of Failure 272
5.7 Normal-Stress Failure Theories: The Mohr Theory for Brittle Materials 276
5.8 Elastic-Plastic Conditions: Limit Design 278
5.9 Fatigue Failures 281
5.10 Fatigue Strength 283
5.11 Modification of Fatigue Strength for Design. Reliability 286
5.12 Stress Concentration 290
5.13 Design and Specifications for Reduction of Stress Concentration. The Flow Analogy 295
5.14 Fracture Mechanics: Stress Intensity Factors 298
5.15 Fracture Mechanics: Toughness, Crack Progression, Design 301
5.16 Margins of Safety. Reliability 304
5.17 Factors of Safety and Balanced Design 307

References 309
Problems 311
6 DESIGN FOR FATIGUE STRENGTH AND LIFE. SHAFT DESIGN
Types of Stress Variation, Design for Fluctuating Stresses, Shaft Design, Design for Limited Cycles and Multiple Stress Levels

6.1 Introduction 335
6.2 Types of Stress Variation: Design for Steady and for Alternating Stresses in Brittle and in Ductile Materials 336
6.3 Design for Simple Fluctuating Stresses 342
6.4 Fluctuating Normal and Shear Stresses: Maximum Shear and Normal-Stress Theories of Failure 346
6.5 Fluctuating Normal and Shear Stresses: Mises-Related Theories of Failure 349
6.6 Shaft Diameters 351
6.7 Examples of Shaft Calculations 354
6.8 Additional Theory and Calculations in Shaft Design 359
6.9 Location and Retention of Components on Shafts 361
Shoulders, 361
6.10 Additional Shaft Details 364
6.11 Design for a Limited Number of Cycles 367
6.12 Design for Several Levels of Stress: Cumulative Damage 370
References 372
Problems 373

7 THERMAL PROPERTIES AND STRESSES. RESIDUAL STRESSES. THREADED CONNECTIONS
Creep Rupture, Creep and Stress Relaxation, Stresses from Thermal Expansion, Harmful and Beneficial Residual Stresses from Assembly, Yielding and Transformation. Bolt Tightening. Fastener Details

7.1 Introduction 391
7.2 The Effect of Temperature on Short-Term Mechanical Properties 392
7.3 Longer-Time Properties: Creep and Creep Rupture 395
7.4 Application of Creep Data for Long-Life Design 398
7.5 Stress Relaxation in Bolts at Elevated Temperatures 401
7.6 Elementary Thermal Stresses 404
7.7 Thermal Fatigue and Shock: Stress Minimization 406
7.8 Detrimental Residual Stresses 407
7.9 Beneficial Residual Stresses: Prestressing 409
7.10 Prestressing by Assembly 410
7.11 Mechanically Induced Yielding 412
7.12 Peening 414
7.13 Thermally Induced Yielding 417
7.14 Transformation of Internal Structure 417
7.15 Summary of Prestressing Methods: Choices and Conditions 419
7.16 Bolt Tightening 420
7.17 Threaded Fasteners 426
7.18 Fastener Strengths and Design 429

References 431
Problems 433

8 AXIALLY SYMMETRICAL LOADING
Membranes, Thin Pressure Vessels and Tanks, Thick Pressure Vessels, Rotating Disks, Interference Fits, Multilayer Vessels, Plastic Strain Limit Analysis, Rotational and Thermal Stresses in Long Cylinders

8.1 Introduction 453
8.2 The Membrane Equation for Shells 454
8.3 Thin Pressure Vessels 457
8.4 Discontinuities, Modifications, and the ASME Code 461
8.5 Tanks and Gravity Loads 462
8.6 Filament-Wound Cylinders 465
8.7 The General Equation of Equilibrium for Thick Cylinders: The Special Case of a Disk of Uniform Strength 467
8.8 Strain in Cylindrical Coordinates: Compatibility: Plane Stress vs. Plane Strain 469
8.9 Plane Stress Equations for General and for Constant Widths 470
8.10 Pressure Cylinders, Rotating Thin Disks, and Spheres 472
8.11 Interference Fits 479
8.12 Multilayered Vessels 484
8.13 Elastic–Plastic Strain 485
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.14 The Plane-Strain Solution: Rotating Cylinders</td>
<td>491</td>
</tr>
<tr>
<td>8.15 Thermal Stresses in Disks and in Long Cylinders</td>
<td>494</td>
</tr>
<tr>
<td>References</td>
<td>497</td>
</tr>
<tr>
<td>Problems</td>
<td>498</td>
</tr>
<tr>
<td>9 MECHANICAL COMPONENTS IN FLEXURE I</td>
<td>521</td>
</tr>
<tr>
<td>Sections and Shapes, Forces and Moments, Bolted and Welded Connections, Displacements by Moment Area, Superposition, and Computation Methods, Stepped Shafts, and Statically Indeterminate Members</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>521</td>
</tr>
<tr>
<td>9.2 Stresses in Straight Beams</td>
<td>523</td>
</tr>
<tr>
<td>9.3 Shapes and Section Properties of Some Machine Components</td>
<td>529</td>
</tr>
<tr>
<td>9.4 Determinate Forces and Moments</td>
<td>536</td>
</tr>
<tr>
<td>9.5 Forces at Bolted and Welded Connections</td>
<td>540</td>
</tr>
<tr>
<td>9.6 Non-Coplanar Moment Analyses</td>
<td>544</td>
</tr>
<tr>
<td>9.7 Displacement of Straight Beams</td>
<td>550</td>
</tr>
<tr>
<td>9.8 Stepped-Shaft Displacements by the Moment-Area Method</td>
<td>552</td>
</tr>
<tr>
<td>9.9 Superposition</td>
<td>556</td>
</tr>
<tr>
<td>9.10 Statically Indeterminate Forces and Moments</td>
<td>561</td>
</tr>
<tr>
<td>9.11 Shaft Displacement Limits and Computational Methods</td>
<td>568</td>
</tr>
<tr>
<td>9.12 Large Deflections of Beams</td>
<td>572</td>
</tr>
<tr>
<td>References</td>
<td>576</td>
</tr>
<tr>
<td>Problems</td>
<td>577</td>
</tr>
<tr>
<td>10 MECHANICAL COMPONENTS IN FLEXURE II</td>
<td>603</td>
</tr>
<tr>
<td>Strain Energy, Thin and Thick Curved Beams, Continuous Elastic Support, Plates</td>
<td></td>
</tr>
<tr>
<td>10.1 Strain Energy Theorems</td>
<td>603</td>
</tr>
<tr>
<td>10.2 Applications of Castigliano’s Theorem: Thin Curved Beams and Frames</td>
<td>608</td>
</tr>
<tr>
<td>10.3 Additional Ring Analyses: Out-of-Plane Loadings: The Coil Clutch</td>
<td>615</td>
</tr>
<tr>
<td>10.4 Stresses in Curved Beams</td>
<td>618</td>
</tr>
<tr>
<td>10.5 Beams with Continuous Elastic Support: Theory</td>
<td>624</td>
</tr>
<tr>
<td>10.6 Tables and Applications of Elastic-Support Equations</td>
<td>628</td>
</tr>
</tbody>
</table>
10.7 Cylinders Restricted in Their Deformation 631
10.8 Flat Plate Theory in Rectilinear Coordinates 634
10.9 Symmetrically Loaded Flat Circular Plates 641
10.10 Tables for Circular Plates: Superposition and Statical Indeterminacy 645
10.11 Belleville Springs 652
References 656
Problems 657

11 SURFACE CONTACTS, SURFACE FAILURES, ROLLING-ELEMENT BEARINGS, AND TRACTION DRIVES 671
11.1 Introduction 671
11.2 Concentrated and Distributed Forces on Plane Surfaces: Boussinesq's Equations 672
11.3 Contact Between Two Elastic Bodies: Hertz Stresses for Spheres 674
11.4 Contact Between Cylinders and Between Bodies of General Shape 679
11.5 Surface Failures 683
11.6 Oil Films and Their Effects 686
11.7 Design Values and Procedures 688
11.8 Rolling-Element Bearings: Load Division, Stresses, and Deflections 690
11.9 Axial Loads and Rotational Effects in Bearings 695
11.10 Bearing Life, Capacity, and Variable Loads 699
11.11 Closure on Rolling-Element Bearings 704
11.12 Traction Drives 705
References 709
Problems 710

12 SPUR, HELICAL, BEVEL AND WORM GEARS; GEAR TRAINS; POWER SCREWS 721
12.1 Introduction 721
12.2 Gear Kinematics and the Involute Tooth Shape 722
12.3 Spur Gear Tooth Loads and Surface Strength 731
12.4 Bending Strength and Size of Spur Gear Teeth 736
12.5 Helical Gears: Characteristics, Geometry, and Forces 740
12.6 Stresses in Helical Gears—The AGMA Equations 743
12.7 Bevel Gearing 746
12.8 Worm Gearing 752
12.9 Translation or Power Screws 760
12.10 Gear Trains 765
12.11 Closure on Gears and Gear Trains 772
References 772
Problems 773

13 TORSION
Straight Circular Bars, Compression and Extension Springs,
Noncircular Solid and Tubular Sections

13.1 Introduction 781
13.2 Torsion of Straight Bars of Circular Section 782
13.3 Stresses in Compression and Extension Coiled Springs 784
13.4 Deflection and Spring Lengths 788
 Deflection, 788
 Spring Lengths, 789
 Buckling, 790
 Surge, 794
13.5 Extension Springs, Variable-Diameter Springs, Nested Springs,
 and Tolerances 795
 Extension Springs, 795
 Variable Coil Diameter, 795
 Nested Springs, 796
 Tolerances, 797
13.6 Spring Materials and Treatment 797
13.7 Static Strengths and Spring Design 799
 Torsional Elastic Limits, 799
 Determination of Wire Size, 799
13.8 Fatigue Strengths and Spring Design 801
 Fatigue Charts, 801
 Ultimate Tensile Strengths, 802
 Determination of Wire Size, 803
 General Method, 805
13.9 Theory of Torsion for Bars of Any Section 805
 Characteristics of the ϕ-Function, 809
 Approximate Method for Solid Sections, 812