The Optical Constants of Bulk Materials and Films
Second Edition

L Ward

Honorary Research Fellow
Coventry University

Institute of Physics Publishing,
Bristol and Philadelphia
## Contents

**Series Editors’ Preface** ix

**Preface to the second edition** xi

**Preface to the first edition** xiii

**List of Symbols** xv

### 1 Theoretical Background  
1.1 Introduction 1  
1.2 Behaviour of insulators 2  
1.3 Theory of reflection and refraction of electromagnetic waves by insulators 4  
1.4 Behaviour of absorbing materials 8  
1.5 Variation with frequency—dispersion theory 16  
1.6 Quantum theory of electrons in solids 24  
1.7 Excitons 33  
References 33

### 2 Experimental Methods for Measuring the Optical Constants of Bulk Materials 35  
2.1 Introduction 35  
2.2 Surface of specimen 35  
2.3 Radiation detectors and noise 40  
2.4 Radiation sources and optical windows 44  
2.5 Techniques for non-absorbing materials 45  
2.6 Photometric methods for absorbing materials 46  
2.7 Polarimetric methods 50  
2.8 Ellipsometric methods 51  
2.9 Accuracy studies 62  
References 74
vi  Contents

3  Kramers–Kronig Methods for Calculating Optical Constants  77
   3.1  Introduction  77
   3.2  Complex frequency plane  78
   3.3  Causality  79
   3.4  Optical impedances  80
   3.5  Contour integration  80
   3.6  Practical applications of Kramers–Kronig relations  85
   3.7  Sum rules  86
       References  87

4  Results for Bulk Specimens  88
   4.1  Introduction  88
   4.2  Metals  88
   4.3  Alloys  125
   4.4  Dielectrics  128
   4.5  Ferroelectrics  131
   4.6  Semiconductors  133
       References  143

5  Thin Films (Preparation and Theory)  151
   5.1  The importance of thin films  151
   5.2  Production of thin films  151
   5.3  Measuring and monitoring film thickness  158
   5.4  Film growth and structure  160
   5.5  Optics of thin films  166
   5.6  Matrix methods for calculating $R$ and $T$ for thin films  175
       References  179

6  Determination of the Optical Constants of Thin Films  181
   6.1  Introduction  181
   6.2  Photometric techniques  182
   6.3  Polarimetry  188
   6.4  Mixed photometry and polarimetry  188
   6.5  Ellipsometry  188
   6.6  Accuracy studies on techniques for $n$ and $k$ for thin films  189
   6.7  Accuracy studies for $n, k$ and $d/\lambda$  200
   6.8  Summary  204
       References  205

7  Results for Thin Films  207
   7.1  Introduction  207
   7.2  Alkali metals  207
   7.3  Alkaline earths group  210
Contents

7.4 Noble metals 211
7.5 Aluminium 215
7.6 Transition elements 218
7.7 Other metals 224
7.8 Alloys 227
7.9 Dielectrics 227
7.10 Semiconductors 228
References 232

8 The Optics of Discontinuous Films 236
8.1 Introduction 236
8.2 Discrete island theories 238
8.3 Effective medium theory 246
8.4 Results for specific materials 250
8.5 Results for composites 258
References 260

9 Applications of Optical Thin Films 263
9.1 Introduction 263
9.2 Antireflection coatings 263
9.3 High reflectance systems 267
9.4 Beam splitters 270
9.5 Polarisers using thin films 271
9.6 Neutral density filters 272
9.7 Interference filters 272
9.8 Rugate filters 280
References 281

Appendix
Values of optical constants of various materials at two laser wavelengths
References 287

Index 289