Writing Organic Reaction Mechanisms: A Practical Guide

by

Michael Edenborough
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
</tbody>
</table>

Part I: Basic Principles

1 *Introduction*
1.1 The Aim of this Book
1.2 What is Organic Chemistry?
1.3 Organic Synthesis
1.4 The Need for Mechanisms
1.5 Examples
1.6 How to use this Book

2 *Electron Counting*
2.1 Introduction
2.2 Atoms
2.3 Uncharged Molecules
2.4 Molecules with Whole Charges

3 *Covalent Bonding and Polarization*
3.1 Introduction
3.2 Partially Charged Species
3.3 Bond Fission
3.4 Isolated Multiple Bonds
3.5 Conjugated Multiple Bonds

4 *Shape of Molecules*
4.1 Introduction
4.2 Types of Bonding
4.3 Tetrahedral Geometry
4.4 Trigonal Planar Geometry
4.5 Linear Geometry
4.6 Further Examples

5 *Stabilization of Charged Species*
5.1 Introduction
5.2 Inductive Effects
 5.2.1 Charged Hydrocarbon Species 64
 5.2.2 Charged Non-Hydrocarbon Species 68
5.3 Mesomeric Effects
 5.3.1 Charged Hydrocarbon Species 69
 5.3.2 Charged Non-Hydrocarbon Species 71
5.4 Degree of S Orbital Character 75
5.5 D Orbital Involvement 76
5.6 Aromatic Character 77
5.7 Hydrogen Bonding 80
5.8 Steric Effects 82

6 Thermodynamic and Kinetic Effects 85
 6.1 Introduction 85
 6.2 Thermodynamic Considerations 87
 6.3 Kinetic Considerations 91
 6.4 Catalysis 96
 6.4.1 General Considerations 96
 6.4.2 Acid/Base Catalysis 97

7 Acid/Base Characteristics 99
 7.1 Introduction 99
 7.2 Definitions of Acids and Bases 99
 7.2.1 Arrhenius 100
 7.2.2 Brönsted-Lowry 100
 7.2.3 Lewis 106
 7.2.4 Cady-Elsey 107
 7.3 Electrophilic and Nucleophilic Properties 108
 7.4 External Effects 112

Part II: Mechanisms

8 Introduction 117

9 Nucleophilic Substitution Reactions 119
 9.1 Introduction 119
 9.2 Substitution at a Saturated Carbon 120
 9.2.1 Introduction 120
 9.2.2 Unimolecular Substitution 121
 9.2.3 Bimolecular Substitution 126
 9.2.4 Intramolecular Substitution 131
 9.2.5 Formation and Cleavage of Three Membered Rings 134
 9.3 Substitution at an Unsaturated Carbon 136
 9.3.1 SN1 and SN2 Mechanisms 136
20.2.3 Expanded Line Notation 362
20.2.4 Stick Notation 362
20.2.5 Two Dimensional Skeletal Notation 363
20.3 Three Dimensional Structural Notations 365
 20.3.1 Haworth Notation 365
 20.3.2 Three Dimensional Skeletal Notation 366
 20.3.3 Stereo Projection 366
 20.3.4 Sawhorse Projection 367
 20.3.5 Newmann Projection 368
 20.3.6 Fischer Projection 368

21 Stereochemical Terminology 369
 21.1 Introduction 369
 21.2 Structural Isomerism 370
 21.2.1 Skeletal Isomerism 371
 21.2.2 Positional Isomerism 372
 21.2.3 Functional Isomerism 374
 21.2.4 Tautomeric Isomerism 375
 21.2.5 Meta Isomerism 375
 21.3 Stereoisomerism 376
 21.3.1 Optical Isomerism 378
 21.3.2 Geometrical Isomerism 383
 21.3.3 Conformers 386

22 Oxidation Numbers 391
 22.1 Introduction 391
 22.2 Oxidation Numbers in Ionic Species 391
 22.3 Oxidation Numbers in Covalent Species 393

23 Skeletal Index 397
 23.1 Hydrocarbon Compounds 397
 23.2 Oxygen Containing Compounds 402
 23.3 Nitrogen Containing Compounds 408
 23.4 Nitrogen and Oxygen Containing Compounds 413
 23.5 Sulfur Containing Compounds 417
 23.6 Phosphorus Containing Compounds 419